Contents

CHAPTER 1 FUNDAMENTAL EQUATIONS OF TURBULENT BOUNDARY LAYERS

1.1	Equations of motion and heat conduction of a two	o-dii	nensio	nal	
	gaseous boundary layer				1
1.2	Turbulent shear and heat exchange in the two-dimension	nal	bound	ary	
	layer				3
1.3	Integral equations of the boundary layer				5
1.4	Characteristic Reynolds number of the boundary layer				10
1.5	Similarity between the velocity and temperature fields				11

CHAPTER 2 LAWS OF FRICTION AND HEAT TRANSFER

2.1 Skin friction in a two-dimensional boundary layer of a compressible

	gas		•	•	•	•		13
2.2	Law of friction							14
2.3	Values of β , z_J and ξ_J when $R \rightarrow \infty$							16
2.4	Limiting friction law				•			21
2.5	Approximate profile of shear stress		•					23
2.6	Approximate temperature profile							25
2.7	Coefficient of non-similarity of the field	elds o	f velo	city a	nd ten	nperat	ure	28
2.8	Limiting law of heat transfer .		•			•.		29
2.9	Approximate profiles of heat flux		•	•				31

CHAPTER 3 FLOW ALONG A FLAT IMPERMEABLE PLATE

3.1	Isothermal boundary layer.					•		. 33
3.2	Coefficient of heat transfer for ψ	≈ 1						. 38
3.3	Drag law for the non-isothermal	boun	dary	layer				. 41
3.4	Limiting drag law		. `			•		. 42
3.5	Limiting law of heat transfer							. 46
3.6	Comparison of the limiting law	of dr	ag wi	th exp	oerime	ntal d	lata fo	or
	supersonic flow							. 48
3.7	The plate with an adiabatic strip	at th	e lead	ling ec	lge			. 58
3.8	Solution of the equations of m	omen	tum :	and ei	nergy	for th	ne no	n-
	isothermal boundary layer with	$T_{\rm S} =$	const	•		•	•	. 65
	CHAPTER 4 FLOW ALC	NG	A P	ERMI	EABL	E PL	ATE	
4.1	Statement of the problem .							. 67
4.2	Drag law for the uniform-compo	sitio	n isotl	nerma	I bour	darv i	laver	. 69
4.3	Law of heat transfer for the unif	orm-	comp	ositior	. near	lv iso	therm	al
	boundary layer							. 71
4.4	Calculation of cooling .						•	. 72

CONTENTS

4.5	Laws of drag and heat transfer for the uniform-composition non-	70
4.6	Law of drag for the isothermal boundary layer of non-uniform	73
	composition	77
4.7	Drag law for the subsonic non-isothermal boundary layer of non- uniform composition	86
	CHAPTER 5 FLOW OVER CURVED SURFACES	
5.1	Limiting parameters for the breakaway of an isothermal boundary	
	layer from an impermeable surface	92
5.2	Condition for the stability of the viscous sub-layer	97
5.3	Approximate relation between the form parameters H and F .	99
5.4	Drag law for the isothermal boundary layer on an impermeable surface	
~ -	for $dp/dx \neq 0$	101
5.5	Solution of the momentum equation for the isothermal boundary	101
= (layer on an impermeable surface	104
5.6	Law of heat transfer in decelerating flows with a near-isothermal	100
. 7	boundary layer on an impermeable wall	108
5.7	Solution of the energy equation for the near-isothermal boundary	111
50	Influence of temperature variations on the breakeway peremeters for	111
5.0	a houndary layer on an impermedule well	111
59	Solution of the equations of energy and momentum for a non-	111
5.7	isothermal boundary layer on an impermeable surface in a subsonic	
	gas stream	116
5.10	Solution of the equations of energy and momentum in supersonic flow	
	of a gas	119
5.11	Solution of the equations of energy and momentum for axi-sym-	
5 1 3	metrical flow	120
3.12	Solution of the equations of energy and momentum for subsonic	100
	now of gases along a permeable slightly curved surface	122
	CHAPTER 6 FLOW IN DUCTS	
6.1	Distribution of velocity, drag and heat transfer for near-isothermal	
	developed flow	126
6.2	Non-isothermal developed flow of a gas	128
6.3	Calculation of drag and heat transfer in the entrance region of a	
	cylindrical pipe	130
6.4	Heat exchange in a duct at the critical pressure	141
Conc	clusion	146
	APPENDIX I SUMMARY OF THE MAIN FORMULAE	
T 1	Flow over impermeable plates	1/0
1.1 1.2	Subsonic flow over a nermeable plate (limiting laws)	150
Ĩ.Ĩ	Critical parameters of boundary-layer breakaway on impermeable wall	151
I.4	Integration of the energy equation	151
1.5	Integration of the momentum equation	153
L.6	Integration of the energy and momentum equations for axi-sym-	100
	metrical flow	154

Х

CONTENTS

APPENDIX II NUMERICAL EXAMPLES

II.1 II.2 II.3	Hea Coc Hea	it tran oling it tran	nsfer of a j nsfer	in a s porou in the	uperso s plato e entry	onic 1 e . v regio	nozzle on of a	1 pipe	•					155 155 159
Auth	ors'	addi	tiona	l rema	arks	•	•	•	•		•		•	161
Bibli	ogra	phy	Rus Wes	sian-l stern-l	angua angua	ge rei ges re	ference eferenc	s. es	•	•	•	•	•	163 166
Inde	x					•			•	•	•			169