CONTENTS

List of Preface	Contributors	v xi
I.	Hypervelocity Accelerators	
A. J.	Cable	
I.	Introduction	1
II.	Gun Accelerators	2
III.	Explosive Accelerators	11
IV.	Summary	16
	References	18
II.	Stress Wave Propagation in Solids	
Norr	is L. Hickerson	
I.	Introduction	23
II.	Stress Wave Propagation in an Infinite, Elastic Medium	24
III.	Stress Wave Propagation in an Elastic Half Space	31
IV.	Elastic Waves in Laminated Media	40
V.	Summary	42
	References	42
III.	Theory of Impact: Some General Principles and the	
	Method of Eulerian Codes	
J. K.	DIENES AND J. M. WALSH	
I.	Introduction	46
II.	Late-Stage Equivalence: An Asymptotic Theory for Late Times	50
III.	Dimensional Analysis, Self-Similarity, and Late-Stage Equivalence	62
IV.	OIL: An Eulerian Hydrodynamic Code	82
V.	RPM: The OIL Code with Strength	87
	References	102

viii CONTENTS

IV.	Theory of Impact on Thin Targets and Shields and Correlation with Experiment	
John	W. Gehring, Jr.	
I. II. III. IV.	Introduction Theoretical Model—One-Dimensional Analysis Theoretical Model—Two-Dimensional Analysis Discussion References	105 106 117 154 155
v.	Numerical Evaluation of Hypervelocity Impact Phenomena	
T. D.	RINEY	
I. II. IV. V. VI.	Introduction Regimes of Material Response Governing Equations Laminated Meteor Bumpers Hollowed Projectiles Crater Predictions for Thick Targets References	158 158 164 166 177 191 211
VI.	Analytical Studies of Impact-Generated Shock Propagation: Survey and New Results	
WILL	IAM J. RAE	
I. II. IV. V. VI.	List of Symbols Introduction Formulation of the Problem Similarity Requirements The Perfect-Gas Case The Real-Fluid Case Concluding Remarks Appendix: Approximate Solution of the Plane Wave, Perfect-Gas Case References	214 215 217 220 226 261 278 282 286
VII. R. G	The Equation of State of Solids from Shock Wave Studies McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz,	
AND '	W. J. Carter	
I. II. IV. V. VI.	Introduction Theoretical Considerations and Calculation Techniques The Equation of State of the Standards The Equation of State of Solids The Method of Mixtures Elastic-Plastic Flow References	294 295 310 339 373 389 415

	•
CONTENTS	1X

CONTENTS	1.X
VIII. Metallurgical Observations and Energy Partitioning	
R. B. Pond and C. M. Glass	
I. Hypervelocity and the Cratering Phenomenon	420
II. Historical Development	422
III. Metallurgical Property Influences on Metal Deformation as a Function	
of Test Velocity IV. The Role of Magnification in Modeling	425 426
V. Correlating Model and Test Data	420 427
VI. Supportive Metallurgical Observations	429
VII. Theory of Cratering Based on Metal Properties	436
VIII. Strain Energy Distribution under the Crater	440
IX. The Relation of Energy Balances to Projectile Orientation	444
X. Summary of Energy Balances	450
XI. Energy Balances on 2S Al Prestrained Targets	454
XII. Calculation of Maximum Impact Damage from Material Properties	457
XIII. Conclusions	459
References	459
 I. Introduction II. Experimental Observations III. Discussion References 	463 464 511 512
Appendix A Shock Wave Data for Standard Materials	515
Appendix B Shock Wave Data for Porous Materials	516
Appendix C Shock Wave Data for Hugoniot Cross Checks	518
Appendix D Shock Wave Data for Solids	521
Appendix E Calculated Thermodynamic Results for Solids	530
Appendix E Calculated Thermodynamic Results for Solids Author Index	530 569