Table of Contents

Preface		V
RHEOLOGY D	RUGSTORE	VIII
CHAPTER 1.	MODELS LIKE MAXWELL'S AND	
	BOLTZMANN'S	1
1.1	The Maxwell element	
1.2	Stress relaxation and instantaneous elasticity	
1,3	A one-dimensional model in the linearized case	
1.4	Hyperbolicity, characteristics	
1.5	Linearized Maxwell models	
1.6	Nonlinear Maxwell models	
1.7	Form invariance and frame indifference	
1.8	Frame independent invariant derivatives	9
1.9	Upper convected invariant derivatives	. 10
1.10	Lower convected invariant derivatives	
1.11	Corotational invariant derivatives	. 12
1.12	Other invariant derivatives	12
1.13	List of Maxwell models	13
1.14	Invariant derivatives of vectors	13
1.15	Integral forms of Maxwell models	., 14
1.16	Restrictions of the range of stresses of the upper and lower	
	convected Maxwell models	
1.17	Quasilinear models like Maxwell's which differ in lower	
	order terms	
1.18	Nonlinear models which are not quasilinear	
1.19	Constitutive equations of Boltzmann's type	
1.20	Wave speeds and stress relaxation for models of	
	Boltzmann's type	
	es	
Solutio	ns for the exercises	29
CHAPTER 2.	MODELS LIKE JEFFREYS'	.35
2.1	Voigt element	35
2,2	Jeffreys element	36
2.3	Tensorial generalization	38
2.4	Integral form of Jeffreys model	
	Oldroyds models A and B [1950]	
2.5	Lower order terms and higher order terms	
2.6	Generalizations of Jeffreys' model	
Exerci	se	43

CHAPT	TER 3	EQUATIONS OF MOTION	44
VIII II	3.1	Transport identities	
	3.2	Balance of momentum	
	3.3	Balance of energy	
	3.4	Boundary conditions.	
	3.5	Incompressible fluids and the reaction pressure	
	3.6	Equations of motion of generalized Jeffreys models	
	3.7	Quasilinear first order systems governing interpolated	
	5	Maxwell models with different lower order terms	
	3.8	Evolution of the vorticity	
	3.9	Vorticity equations in direct notation	. 56
		es	
		ns for the exercises	
Снарт	ΓER 4.	HADAMARD INSTABILITY AND FROZEN	
	,,	COEFFICIENTS	69
	4.1	Hadamard instability and Laplace's equation	
	4.2	Backward heat equation	
	4.3	Frozen coefficients	
	4.4	Hadamard instability of interpolated Maxwell models	
	4.5	Frozen coefficients on short waves	
	4.6	Instability to short waves	
	4.7	Hadamard instability of the White-Metzner model	
	4.8	Catastrophic short wave instability and the loss of well-	
	4.0	posedness	.83
	4.9	Some further comments about frozen coefficients	
	4.10	Regularization of ill-posed problems	. 88
	4.11	Hadamard instability of phase change models based on reclining S shaped curves and the regularization of this	
		instability by viscosity	.88
	4.12	Hadamard instability for some non-Newtonian fluids based	
		on analysis of the fourth order equation for the stream	
	<u>.</u> .	function	
		es	
	Solutio	ns for the exercises	.97
CHAP	TER 5.	CHARACTERISTICS AND CLASSIFICATION OF	
		TYPE	
	5.1	Characteristic surfaces	
	5.2	Analysis of the roots	102
	5.3	One-dimensional unsteady flow	103
	5.4	Two-dimensional steady flows	103
	5.5	Characteristic surfaces for the vorticity	105
	5.6	Wave speeds and hyperbolicity	

хi

	5.7	How to convert a nonlinear system into a quasilinear one107
	5.8	Weak compressibility110
	Exercise	es114
	Solution	ns for the exercises118
Снарт	ER 6.	HYPERBOLICITY AND CHANGE OF TYPE IN
		STEADY FLOW127
	6.1	Two kinds of change of type127
	6.2	Linearized problems and change of type129
	6.3	Perturbation of uniform flow, the viscoelastic Mach
		number
	6.4	Perturbation of simple shear flow
	6.5	Poiseuille flow of a Maxwell model
	6.6	Extensional flow
	6.7	Rigid rotation
	6.8	Nonlinear ordinary differential equations along
		characteristics
	6.9	Analysis of type in a nonlinear system which is not
		quasilinear: the White-Metzner model
	6.10	Analysis of type for the fourth order stream function
		equation for flow of the White-Metzner model149
	6.11	Numerical simulations and analysis of type
	Exercise	es
	Solution	ns for the exercises
P		130
Снарт	ER 7.	SUPERCRITICAL FLOW PAST BODIES
	7.1	Linearization around uniform flow
	7.2	Waves of vorticity
	7.3	"Mach" cones167
	7.4	Change of variables
	7.5	Maxwell models
	7.6	Dimensionless parameters
	7.7	Flow around stationary bodies175
	7.8	Critical phenomena in heat and mass transfer from
		cylindrical waves in cross-flow
	7.9	The work of Ultman and Denn
	7.10	The experiments of Koniuta, Adler, and Piau194
	7.11	Further remarks about critical phenomena and change of
	ac constant	type
	7.12	Numerical computation of the flow of an upper convected
	(20 1 (20 2) (1	Maxwell model past a cylinder
	7 12	Drag reduction 207

CHAPTER 8	. MACH WEDGES AND UPSTREAM INFLUENCE IN
	THE PARTLY HYPERBOLIC FLOW OVER A FLAT
·	PLATE
8.1	Green function solution
8.2	Fraenkel's solution
8.3	Fraenkel's solution for Maxwell models
8.4	Asymptotic expressions for the velocity and stress near
	the shock
	8.4.1 The vorticity near the shock
	8.4.2 Continuity of velocity across the shock220
	8.4.3 The rotational part of the velocity near the shock222
	8.4.4 The rotational part of the stresses near the shock223
	8.4.5 The harmonic part of the velocity near the shock225
	8.4.6 Comparison of the wall shear stress near the
	leading edge for the flow of a Newtonian and
	viscoelastic fluid with the same viscosity228
8.5	The far field
8.6	Numerical solution of H. Hu230
8,7	Graphs of vorticity, velocity and stress232
8.8	Experiments of Hermes and Fredrickson244
CHAPTER 9	. HYPERBOLICITY AND CHANGE OF TYPE IN SINK
	FLOW
9.1	Introduction249
9.2	Interpolated Maxwell models with instantaneous
9.2	interporated manufacts with instantantous
7.2	
9.2	elasticity
	elasticity
9.3	elasticity
9.3 9.4	elasticity
9.3 9.4	elasticity
9.3 9.4 9.5 9.6 Exerc	elasticity
9.3 9.4 9.5 9.6 Exerc	elasticity
9.3 9.4 9.5 9.6 Exerc Solut	elasticity
9.3 9.4 9.5 9.6 Exerc Solut	elasticity
9.3 9.4 9.5 9.6 Exerc Solut CHAPTER 1	elasticity
9.3 9.4 9.5 9.6 Exerc Solut	elasticity
9.3 9.4 9.5 9.6 Exerc Solut CHAPTER 1	elasticity
9.3 9.4 9.5 9.6 Exerc Solut CHAPTER 1 10.1 10.2	elasticity
9.3 9.4 9.5 9.6 Exerc Solut CHAPTER 1 10.1 10.2 10.3 10.4	elasticity

CHAPTER 11.	SIMILARITY SOLUTIONS THAT GIVE RISE TO	
	HYPERBOLICITY AND CHANGE OF TYPE IN	
	STEADY FLOWS OF VISCOELASTIC FLUIDS	296
11.1	Introduction	
11.2	Analysis of characteristics	
11.3	Flow between parallel plates which rotate at different	
	speeds around a common axis	
11.4	Change of type in the flow between rotating parallel	
1. 2	plates	.309
11.5	The viscoelastic Mach number	.315
11.6	Three dimensional perturbations of the similarity	
	solution	
11.7	Fluid driven by an accelerated surface	.320
CHAPTER 12.	POISEUILLE FLOWS	328
12.1	Introduction	
12.2	Governing equations for steady flow of Maxwell fluid	
12.3	The vorticity equation	
12.4	Characteristics nets for problems perturbing plane	
	Poiseuille flow	
12.5	Perturbation equations for wavy walls	
12.6	Separation of variables	
12.7	Results	
12.8	Pipe flow problem	
12.9	Governing equations	
12.10	Poiseuille flow	
12.11	Characteristics for the vorticity	
12.12	Linearized problem for pipe flow with wavy walls	
12.13	Results	
	·	
CHAPTER 13.	DIE SWELL AND DELAYED DIE SWELL	365
13.1	Momentum balance	.366
13.2	Description of delayed die swell	
13.3	Previous work	
13.4	Notations	
13.5	Experiments	.384
13.6	Values of parameters at criticality	.388
13.7	Post-critical values of the flow parameters	.392
13.8	Post-critical dependence of the swell ratio on the shear rate	
	and Reynolds number in fluids with a small mean time of	
	relaxationost-critical dependence of the swell ratio on the	
	shear rate and Reynolds number in fluids with a small	
	mean time of relaxation	
13.9	Conclusions	

xiv Table of Contents

13.10	A numerical simulation of the nonlinear problem (the section is a last-minute addition)	
Exercis	e 13.1	
CHAPTER 14.	HYPERBOLICITY AND CHANGE OF TYPE IN THE	3
	FLOW BETWEEN ROTATING CYLINDERS WHEN	1
	THE INNER CYLINDER IS CORRUGATED*	
CHAPTER 15.	SIMPLE FLUIDS AND FADING MEMORY	421
15.1	Noll's representation	422
15.2	Fading memory	
15.3	Rate equations for fluids with instantaneous elasticity	
15.4	Rate equations for single integral models	436
Exercis	e 15.1	438
CHAPTER 16.	ASYMPTOTIC THEORIES FOR SIMPLE FLUIDS.	., 439
16.1	Functional expansion perturbing rigid motion	440
16.2	Multiple integral expansions	442
16.3	Nonuniqueness of multiple integrals	
16.4	Canonical forms of the stress for perturbation of the re-	est
	state	
16.5	Canonical forms for the stress perturbing rigid motion	
16.6	Nearly steady slow motion	
16.7	Fluids of grade N, stability of the rest state	
16.8	Dynamics of slow steady motion	
16.9	Functional expansions perturbing viscometric flows	
Exercise	SS	479
CHAPTER 17.	SECOND ORDER FLUIDS	
17.1	Balance of normal stresses and inertia	
17.2	The vorticity equations at first and second order	
17.3	Axisymmetric flow induced by rotating bodies	
17.4	Rotating rod	
17.5	Rotating wavy rod	
17.6	Rotating sphere, cone, and plate	
17.7	Flow between rotating disks	
17.8	Die swell in a low speed jet	
17.9	Inertial and normal stress effects on pressure readings	
17 10	pressure holes	
17.10 17.11	Rod climbing	
17.11	Some other free surface problems	
17.12	17.12.1 Tilted trough	

	17.12.2 Density difference singularities and normal stre	
Exercise	es	530
ER 18.	ELASTICITY AND VISCOSITY OF LIQUIDS	539
18.1	Constitutive equations	539
18.2		
183		
DACICISC		3/1
ER 19.	WAVE PROPAGATION IN LINEAR VISCOELAST	IC
	FLUIDS	573
19.1		
0.000		
	Spectral decomposition of G(s) and effective moduli	580
	Stokes' first problem for viscoelastic fluids	582
		590
ER 20.	NONLINEAR WAVES	605
20.1		
20.2		
20.3	Acceleration waves (evolution of jumps in the vorticity)	616
20.4	Breakdown of smooth shearing flow in viscoelastic flui	ds
	for two constitutive relations	45
		622
20.5		
-5.0		
	,	031
DIX A.	TENSOR ALGEBRA	641
A 1		
	Gradient of a vector F(x)	642
	Orthogonal tensors	642
	Determinant formula	042
A 4	Determinant formulae	600
A.4 A.5	Determinant formulas Isotropic tensors, tensor functions and functionals	642
	18.1 18.1 18.2 18.3 Exercise ER 19. 19.1 19.2 19.3 19.4 Exercise ER 20. 20.1 20.2 20.3	amplifiers Exercises TER 18. ELASTICITY AND VISCOSITY OF LIQUIDS 18.1 Constitutive equations. 18.1.1 Stress relaxation and fading memory. 18.1.2 Static viscosity, Newtonian viscosity, elas viscosity

A. 7	Cauchy theorem for isotropic tensors	644
A.8	Isotropic tensor polynomials multilinear in n symmet	ric
	tensors	644
A.9	Invariants of a second-order tensor	645
A.10	Cayley-Hamilton theorem and tensor functions	
A.11	Representation theorem for tensor functions of ty	wo
A 10	symmetric tensors (Rivlin, [1955])	646
A.12	Polar decomposition theorem	646
APPENDIX B.	RECIPROCAL BASE VECTORS, METRIC	
	TENSORS, COMPONENTS	648
B.1	Gradient of a scalar	
B.2	Contravariant and covariant components of vectors	648
B.3	Metric tensors	648
B.4	Orthonormal bases and Cartesian bases	649
B.5	Components of a second-order tensor	649
APPENDIX C	KINEMATICS	651
Salutian	as for the exercises	663
Solution	is for the exercises	663
APPENDIX D.	STREAM FUNCTION-ANGULAR MOMENTUM,	
	DECOMPOSITION FOR AXISYMMETRIC FLOW.	667
Exercise	3S	669
APPENDIX E	DOMAIN PERTURBATION	670
AT ENDIA E.	DOMAIN PERTURBATION	670
APPENDIX F.	THE WAVE SPEED METER	678
F.1	Introduction	678
F.2	The wave-speed meter	679
	F.2.1 The apparatus	679
	F.2.2 Theoretical model for the wave-speed meter	681
	F.2.3 Measurements of transit times	687
	2.3.1 The optical system	687
	2.3.2 Transit times	688
F.3	Criteria for waves	
F.4	Errors	
F.5	Data on shear-wave speeds	

Table of Contents	xvii

REFERENCES	9
AUTHOR INDEX73	5
Subject Index74	1
PERMISSIONS	3