TABLE OF CONTENTS

	Page
Preface	. v
Two- and Three-Dimensional Turbulence by Hendrik Tennekes	
Preface	. 1
Chapter 1: Introduction	. 2
Chapter 2: Vorticity Dynamics	
Chapter 3: The Phenomenology of Turbulence	
Chapter 4: Consequences of the Kolmogorov Theory	. 15
Chapter 5: Predictability and Other Problems	
Chapter 6: Predictability of a Simple System	
Chapter 7: Self-Consistent Scaling in the $K - \epsilon$ Model	
Chapter 8: The Decay of Turbulence in Plane Homogeneous	
Shear Flow	. 32
Chapter 9: Second-Order Modeling: Some Examples	
Chapter 10: Part I: Second-Order Modeling: The Surface Layer	
Chapter 11: Part II: Flux Maintenance in	
Two-Dimensional Turbulence	. 44
1. Introduction	
2. Governing Equations	
3. Stability Analysis	
4. Mean Flow and Eddy Kinetic Energy	
5. Heat Flux and Temperature Variance	
6. Flux Maintenance Dynamics	
7. Enstrophy Maintenance and Cascade Dynamics	
8. Conclusions	. 72

Magnetohydrodynamic Turbulence by David Montgomery	
Preface	75
Chapter 1: Magnetofluid Turbulence	76
The MHD Equations	78
Chapter 2: The Origin of Turbulence. Part I: Shear Flow	
and Current Gradients	86
A Prototype Example: Plane Poiseuille Flow	86
Chapter 2: (continued) The Origin of Turbulence. Part II:	
MHD Analogue	89
Chapter 3: Ideal MHD Stability, Incompressibility Conditions,	
and Ideal Invariants	96
Chapter 4: Some Connections with Statistical Mechanics	104
Chapter 5: More Statistical Mechanics	109
Chapter 6: Spectral Cascades and Turbulent	
Relaxation Processes	117
Chapter 7: Anisotropic Effects in MHD	132
A. The Strauss Equations	132
B. Anisotropic k-Spectra by Alfvén Wave Effects	135
C. MHD Turbulence in Tokamaks	139
D. Numerical Investigations of the Strauss Equations	142
Chapter 8: Compressible MHD Turbulent Relaxation	
Chapter 9: Part I: MHD Turbulence in Reversed-Field	
Pinch Plasmas	154
Chapter 9: (continued) Part II: 3D Reversed-Field	
Pinch Simulation	161
Chapter 10: MHD (Plasma) Turbulence to the Year 2000	166
A. Introduction	
B. Aesthetically Driven Problems	
C. Phenomenon-Driven Problems	
D. Conclusions	

·	
Lecture Notes by Douglas Lilly	
Preface	71
Chapter 1: Helicity	72
Chapter 2: Helical Convection	31
2.1 Regimes of Atmospheric Convection	31
2.2 Convective Storm Evolution	31
2.3 Motion of Rotating Updrafts	33
Chapter 3: Flow Fields in Helical Convection	36
3.1 An Idealized Rotating Thunderstorm	36
3.2 Tornadic Flow Fields	38
3.3 Other Candidates for Helical Flow in the Atmosphere . 18	38
Chapter 4: Turbulence in Stably Stratified Fluids	91
4.1 The Ozmidov Length Scale and Application 19	91
4.2 Waves and Quasi-Horizontal Turbulence 19	92
Chapter 5: Modes of Turbulence in Stably Stratified	
Environments: Part I	97
5.1 Grid-Generated or Numerically Initiated Turbulence 19	97
5.2 Wake Collapse	98
5.3 Turbulent Layer Bounded by Stable Interfaces 19	99
Chapter 6: Modes of Turbulence in Stably Stratified	
Environments: Part II	02
6.1 Breaking Gravity Waves	04
Chapter 7: Subgrid Closures in Large Eddy Simulation: Part I 20	07
7.1 Definitions	0
7.2 Smagorinsky Closure	08
7.3 Limitations and Adjustments to SGS Closures 2	13
Chapter 8: Subgrid Closures in Large Eddy Simulation: Part II 2	14
8.1 Leonard's Analysis	14
8.2 Subsequent Developments	10
8.3 Future Work	1

Lectures on Turbulence and Lattice Gas Hydrodynamics by Uriel Frisch
Preface
Chapter 1: Current Beliefs about Fully Developed
Turbulence: Part I
Chapter 2: Current Beliefs about Fully Developed
Turbulence: Part II
Chapter 3: Turbulent Transport of Scalars and
Magnetic Fields
1. Transport of Scalar Fields
2. Transport of a Magnetic Field
3. Conclusions
Appendix to Chapter 3
Chapter 4: Large-Scale Instability in 3D Flows
Lacking Parity-Invariance
Chapter 5: Lattice Gas Hydrodynamics: Introduction 252
Chapter 6: Lattice Gas Hydrodynamics: Microdynamics 256
Chapter 7: Lattice Gas Hydrodynamics: Collisions
and Equilibria
Chapter 8: Lattice Gas Hydrodynamics: From Microdynamics
to the Navier-Stokes Equations
Chapter 9: Lattice Gas Hydrodynamics: Reynolds Number,
Noisy Hydrodynamics
Chapter 10: Lattice Gas Hydrodynamics: Software and
Hardware Implementations. Concluding Remarks 274
Chapter 11: Large-Scale Flow Driven by the Anisotropic
Kinetic Alpha Effect
1. Introduction
2. The AKA Effect: The Linear Regime 280
3. A Specific Example of AKA Instability 282
4. Nonlinear Saturation of the AKA Instability 286
5. Conclusion
Appendix
Appendix: "Lattice Gas Hydrodynamics in Two and
Three Dimensions"