CONTENTS

VOLUME I

I. INT	TRODUCTION by L. HOWA	RTH					
	Compressibility		•	•		•	1
	Dynamical similarity .			•		•	2
3.	Subsonic and supersonic flo	ws. Ma	ch cones	and lines	•		7
	Stream-tubes in steady con				•	•	11
	Waves of finite amplitude.			•			12
	Boundary layers .		•	•		•	16
	Laval nozzle		•	•		•	19
8.	Flow past a symmetrical ae	rofoil of	infinite sp	oan at zei	o incide	ence.	
	Effect of variations of Ma			•	•	•	24
9.	The two-dimensional aerofo	oil at inc	idence. 1	Forces	•	•	29
10.	Effect of yaw. Sweep back	•	•	•	•	•	31
п. ті	HE EQUATIONS OF FLO	W IN G	ASES by	L. HOWA	RTH		
1.	Introduction		•	• •	•		34
2.	Rate-of-strain and stress in	a gas i	n motion	•	•		34
3.	Thermodynamical principle	s.	•	•	•	•	38
	The equation of continuity			•	•		49
5.	Equations of motion .		•			•	49
	The rate of change of circu	ilation i	n a visco	us comp	ressible	fluid	51
	The energy equation. The				•	•	52
8.	The velocity of sound .	-	•	•	•		57
9.	Dynamical similarity .	•	•		•	•	58
10.	The motion of an inviscid	non-con	ducting g	as .	•	•	61
11.	The stream-function for f	low in	two dim	ensions a	and in t	three	
	dimensions with axial sy	mmetry	•	•	•	•	65
12.	The molecular structure of	gases	•	•	•	٠	66
Арі	PENDIX						
C	rocco's stream-function .		•		•		69
III. T	THE METHOD OF CHAR.	ACTERI	ISTICS b	у к. е. м	EYER		
1.	Introduction	•			•		71
	Equations of motion for st	eady flo	w.	•	•	•	71
	Mach lines	•		•	•	•	73
4.	Streamlines	•		•		•	76
5.	Uniqueness theorem .		•	•	•	•	77
	Massau's method of integr	ation .	•	•	•	•	79
	Conditions along the axis		ially sym	metrical	flow	•	83
	Two-dimensional, homent				•	۰	84

x CONTENTS

9,	Conditions near	r the son	ic line	•				. 87
10.	Examples of th	e applic	ation of	Massau'	s metho	d		
	(a) Two-dimens	sional sy	mmetric	al wind-	tunnel n	ozzle ar	nd jet	. 88
	(b) Expansion of			round an	edge in	the wal	l of a duo	
	of circular cr		-	•	•	•	•	. 93
	Guderley's exte				hod	•	•	. 94
	Unsteady flow:	-	-	ns	•	•	•	. 97
	Unsteady home	-		•	•	•	•	. 99
	Unsteady one-o			-		•	•	. 101
15.	Example: Flow	v produc	ed in a	tube by	a pistor	unifor	mly with	
	drawn	•	•	•	•	•	•	. 102
	Additional R	EFERENC	ES	•	•	•	•	. 104
IV. 8	Section I. SHO	CK WAY	VES by o	C. R. ILLI	NGWOR	н		
1.	Introduction	•	•		•	•	•	. 105
2.	Plane waves	•	•		•	•	•	. 106
	Waves in an in	compres	sible flui	d in an o	open cha	nnel	•	. 110
	The equations r				-		lock wav	e 111
	The structure of	-	•				_	. 122
	Vorticity	•						. 131
	The occurrence	of shoe	k waves	in stead	v two-d	imensio	nal supe	
	sonic flow			•	•	•		. 132
. 8.	Intersection of	two sho	ck wave	8		•		. 137
ST	CTION II. BLAS	TT 337 A 371	TS by a	T WWMO				
	Introduction	T WATA	26 <i>0y</i> G.	J. KINU	н			140
		•	•	•	•	•	•	. 146
	Motion due to					•	•	. 147
	Shock-wave co			-		•	•	. 148
	The equations		n Lagrar	igian for	m	•	•	. 150
	The energy equ		•	•	•	•,	•	. 151
	Velocity of pro						sures	. 153
15.	Determination			a simila	rity hyp	othesis		. 153
·	Additional R	EFERENC	ES	•	•	•	•	. 157
	OME EXACT S							
H	OMENTROPIC	FLOW	OF AN	INVISC	ID GAS	<i>by</i> w. 6	. BICKLE	Y
1.	Introduction	•		•	•	•	•	. 158
2.	Vortex .	•	•`	•	•	•	•	. 158
3,	Radial flow	•	•	•	•	•		. 159
4.	Spiral flow	•	•	•	•	•	•	. 162
	Supersonic exp	ansion r	ound a c	orner (P	randtl-1	Mever e	xpansior	
	Two-dimension					-		. 173
	Transition from	-			-		el design	
1.					ou por bor			

	CONTENTS		xi
9.	The flat plate at incidence in a supersonic stream		179
	The double-wedge aerofoil		182
	Supersonic flow past a cone	•	185
VI. C	ONE-DIMENSIONAL FLOW by o. a. saunders		
1.	Introduction		190
2.	The general energy equation for steady one-dimensional flow	•	191
3.	The energy equation for reversible or lossless flow .		195
	Relations involving cross-sectional area of passage		198
5.	Flow without losses at constant cross-sectional area with he exchange	eat	205
c	5	•	
	Experimental study of heat transfer at high speeds of flow	•	210 211
	The momentum equation	•	
	Adiathermal flow at constant cross-sectional area with friction		212
	Flow with combined change of area, friction, and heat exchan	ige	216
	Representation on temperature-entropy diagram .	•	218
11.	Condensation shocks	•	219
	Additional References	•	221
	THE HODOGRAPH TRANSFORMATION by m. j. lighthili	`	
	Derivation of hodograph equations	•	222
	The Kármán–Tsien approximation	•	224
	Chaplygin's method (gaseous jets)	•	227
	Properties of the hypergeometric functions $\psi_n(\tau)$.	•	232
	Flow round a body (subsonic region, circulation absent).	•	237
	Flow with circulation	•.	244
7.	Other forms of ψ : extension to the supersonic region $% \psi$.	•	247
	Limit lines	•	249
	Branch lines. Transonic flow with a straight streamline .	٠	258
10.	Example of flow round a body	•	262
	Additional References	•	266
VIII.	APPROXIMATE METHODS by g. n. ward		
1.	Introduction	•	267
2.	Subsonic flow—linear approximation	•	269
	Two-dimensional subsonic aerofoils—linear approximation	•	270
	The Kutta-Joukowski relation in subsonic flow .		271
5.	Three-dimensional subsonic aerofoils—lifting line theory		273
6.	Slender bodies in subsonic flow—linear approximation .	•	274
7.	Two-dimensional subsonic flow-higher approximations.		275
	Two-dimensional subsonic flow—the electrical analogy .		278
	Supersonic flow—linear approximation		280
	Two-dimensional supersonic aerofoils—linear approximation	•	282
	Two-dimensional supersonic aerofoils-higher approximations		286
	Three-dimensional supersonic aerofoils-linear approximation		290

CONTENTS

13. Supersonic conefield flow—linear approximation	296
14. Supersonic flow past slender pointed bodies-first approximation	302
15. Supersonic flow past slender bodies of revolution	307
16. Slender bodies of revolution carrying wings of small aspect ratio— first approximation	313
17. Axially symmetrical supersonic flows containing the axis-linear	
approximation	316
18. Slender bodies in transonic flow—similarity laws .	319
Additional References	322
IX. UNSTEADY MOTION by G. TEMPLE	
I. THE LINEAR APPROXIMATION	
1. Introduction	325
2. The equations of motion	326
3. The wave equation	327
4. The downwash	329
5. Quasi-stationary supersonic wing theory	332
6. General supersonic theory for wings of infinite aspect ratio	337
7. Supersonic theory for wings of finite aspect ratio	341
8. General subsonic theory for wings of infinite aspect ratio	350
9. Subsonic theory for wings of finite aspect ratio .	354
10. Slender bodies of revolution	356
11. Other methods and problems	360
12. Limitations and extensions of the linear approximation .	363
II. THEORETICAL AND EXPERIMENTAL VALUES OF DERIVATIVES	
13. Subsonic wings of infinite aspect ratio	364
14. Supersonic wings of infinite aspect ratio.	371
-	
X. BOUNDARY LAYERS by A. D. YOUNG	
1. Introduction	375
2. Two-dimensional laminar motion. Flow along a flat plate	378
3. Flow along a curved wall	382
4. Motion symmetrical about an axis	382
5. Dynamical and thermodynamical similarity. Non-dimensional	386
form of the equations.	387
 The influence of body forces due to gravity . Laws of variation of density and viscosity with temperature. 	301
The value of the Prandtl number for air	388
8. Extension of von Mises's transformation of the equations for	
steady motion	390
9. Momentum integral equations of the boundary layer .	391
10. Alternative forms of the energy equation for a perfect gas	395
11. Condition for similar velocity and temperature profiles at various stations on a surface .	399

xii

CONTENTS

12.	Crocco's transformation of the laminar boundar,	y-layer e	equation	s	400
13.	Steady laminar boundary layer on a flat plate	at zero	incidenc	ю	
	in a perfect fluid in uniform flow .	•	•	•	401
14.	Steady laminar boundary layer on a cylinder	•	•	•	431
15.	The stability of the laminar boundary layer	•	•	•	446
16.	Turbulent boundary-layer equations. Total energy		bution fo	or	
	the turbulent boundary layer on a flat plate	•	•	•	453
17.	Turbulent boundary-layer velocity distribution	and ski	n frictio	n	456
18.	Scale effect and shock wave-boundary layer int	eraction	•	•	462
	Additional References	•			474

VOLUME II

I. WIND TUNNELS AND MOVI	NG BODIES				
1. Introduction .	•		•	• •	
2. High-speed wind tunnels	•	•	•	•	
3. High-speed wind tunnel	design .	•			
4. Throats and nozzles for a	supersonic t	unnels			
5. Nozzle profiles .	•		•	•	
6. Test sections .	•		•	•	
7. Diffusers .	•	•		•	
8. Methods for driving high	-speed tunn	els .	•	• .	
9. Intermittent tunnels	•	•	•	•	
10. The wind-tunnel 'bump'	technique	•		•	
11. Shock tubes .	•	•	•	•	
12. Moving-body tests	• • .	•		•	
II. UNCERTAINTIES AND COR	RECTIONS AI	RISING II	N TUNNI	EL TESTS	
13. Introduction .					
14. Interference from the bo	undaries of	the worl	king sec	tion	
15. Linear theory of tunnel	constraint	•	•		
16. Total induced velocity		•	•	•	
17. Method of applying corre	ections .	•	•	•	
18. Effect of location of vor	tex and sour	ce .	•	•	
19. Effects of span and lengt	th.	•	•	•	
20. Validity of linear theory		•		•	
21. Alternative methods		•		•	
22. Experimental verification	n.	•	•	•	
23. Supersonic tunnels		•	٠	•	

xiii