	Preface	page	xi
	Acknowledgements		xiii
1	Some basic ideas		1
	1.1 Planetary atmospheres		1
	1.2 Equilibrium temperatures		2
	1.3 Hydrostatic equation		3
	1.4 Adiabatic lapse rate		3
	1.5 Sandström's theorem		4
	Problems		6
2	A radiative equilibrium model		8
	2.1 Black-body radiation		8
	2.2 Absorption and emission		8
	2.3 Radiative equilibrium in a grey atmosphere		10
	2.4 Radiative time constants		13
	2.5 The greenhouse effect		14
	Problems		15
3	Thermodynamics		17
	3.1 Entropy of dry air		17
	3.2 Vertical motion of saturated air		17
	3.3 The tephigram		20
	3.4 Total potential energy of an air column		20
	3.5 Available potential energy		22
	3.6 Zonal and eddy energy		26
	Problems		27
4	More complex radiation transfer		31
	4.1 The integral equation of transfer		31
	4.2 Integration over frequency		32
	4.3 Heating rate due to radiative processes		33
	4.4 Single lines		33
	4.5 Transmission of an atmospheric path		37

	4.6	Cooling by carbon dioxide emission from upper		
		stratosphere and lower mesophere	37	
	4.7	Absorption of solar radiation by ozone	38	
	4.8	Band models	39	
	4.9	Continuum absorption	40	
	4.10) Global radiation budget	40	
		Problems	42	
5	The	upper atmosphere	46	
	5.1	Upper atmospheric temperature structure	46	
	5.2	Diffusive separation	47	
	5.3	The escape of hydrogen	50	
	5.4	The energy balance of the thermosphere	53	
	5.5	Photochemical processes	55	
	5.6	Breakdown of thermodynamic equilibrium	57	
		Problems	63	
6	Clouds			
	6.1	Cloud formation	67	
	6.2	The growth of cloud particles	67	
	6.3	The radiative properties of clouds	69	
	6.4	Radiative transfer in clouds	70	
		Problems	72	
7	Dyı	Dynamics		
	7.1	Total and partial derivatives	74	
	7.2	Equations of motion	74	
	7.3	The geostrophic approximation	77	
	7.4	Cyclostrophic motion	79	
	7.5	Surface of constant pressure	79	
	7.6	The thermal wind equation	80	
	7.7	The equation of continuity	81	
		Problems	82	
8	Atr	Atmospheric waves		
	8.1	Introduction	87	
	8.2	Sound waves	87	
	8.3	Gravity waves	88	
	8.4	Rossby waves	93	
	8.5	The vorticity equation	95	
	8.6	Three dimensional Rossby-type waves	96	
		Problems	98	
		viii		

9	Turbulence	103
	9.1 The Reynolds number	103
	9.2 The Reynolds stresses	104
	9.3 Eckman's solution	105
	9.4 The mixing-length hypothesis	107
	9.5 Eckman pumping	108
	9.6 The spectrum of atmospheric turbulence	109
	Problems	110
10	The general circulation	115
	10.1 Laboratory experiments	115
	10.2 A symmetric circulation	116
	10.3 Inertial instability	121
	10.4 Barotropic instability	122
	10.5 Baroclinic instability	123
	10.6 Sloping convection	127
	10.7 Energy transport	128
	10.8 Transport of angular momentum	129
	Problems	130
11	Numerical modelling	134
	11.1 A barotropic model	134
	11.2 Baroclinic models	134
	11.3 Primitive equation models	136
	11.4 Inclusion of orography	138
	11.5 Convection	138
	11.6 Moist processes	138
	11.7 Radiation transfer	139
	11.8 Sub grid scale processes	143
	11.9 Transfer across the surface	143
	11.10 Other models	144
	Problems	145
12	Global observation	146
	12.1 What observations are required?	146
	12.2 Conventional observations	146
	12.3 Remote sounding from satellites	147
	12.4 Remote sounding of atmospheric temperature	148
	12.5 Remote sounding of composition	152
	12.6 Observations from remote platforms	155
	Problems	157

ix

13	Atmospheric predictability and climatic change	160
	13.1 Short-term predictability	160
	13.2 Longer-term variations	161
	13.3 Atmospheric feedback processes	162
	13.4 Climate modelling	163
Appe	endices	164
	1 Some useful physical constants and data on dry air	164
	2 Properties of water vapour	165
	3 Atmospheric composition	165
	4 Relation of geopotential to geometric height	167
	5 Model atmospheres (0–105 km)	167
	6 Mean reference atmosphere 110–500 km	176
	7 The Planck function	176
	8 Solar radiation	170
	9 Absorption of solar radiation by oxygen and ozone	179
	10 Spectral band information	180
	Bibliography	187
	References to works cited in the text	
	·	190
	Answers to problems and hints to their solution	193
	Index	198