CONTENTS

· ·

PREFACE TO VOLUME I					•		•		•		÷			•			•				•	vii
PREFACE TO THE FIRST EDITION	•	•	•	•	•	•	-	•	•	•	•	,	•	•	•	-	•	•	•	•	•	ix

I. GENERAL CONSIDERATIONS

1.1	Introductory remarks
1.2	General features of hypersonic flow fields.
1.3	Assumptions underlying inviscid hypersonic theory
1.4	The normal shock wave
1.5	Obligue and curved shocks
1.6	Mach number independence principle
1.7	General strip theory
1.8	Dissipative effects 20

II. SMALL-DISTURBANCE THEORY

2.1	Introduction and basic equations
2.2	Hypersonic similitude
2.3	Unified supersonic-hypersonic similitude
2.4	Slender-body strip theory
2.5	Examples of small-disturbance solutions
2.6	Similar power-law solutions
2.7	Application of similar solutions to steady flows
2.8	Slightly blunted elender bodies
2.9	Large incidence and correlation of similitudes
2 10	Large medence and contribution of similaritudes
2.10	Unsteady now theory
2.11	Nonequilibrium effects
	•

III. NEWTONIAN THEORY

	xiii											
3.3	Simple shapes and free layers	•										139
3.2	Two-dimensional and axisymmetric bodies	•	•	·	•	•	•	•	•	•	٠	133
3.1	The gasdynamics of Sir Isaac Newton		-	-	•	·			٠			129

.

CONTENTS

3.4	Optimum shapes								152
3.5	Shock layer structure and cross flow phenomena		-						169
3.6	Shock layer structure with cross flow								179
3.7	Conical flow								190
3.8	Bodies of revolution at small incidence								201
3.9	Unsteady flow	•	•	٠	•		•		206

IV. CONSTANT-DENSITY SOLUTIONS

4.1	The wedge	•	•		-				•	•			•	•								217
4.2	The cone .	•								•							•	_				224
4.3	Circular cylin	nd	er	•	•		٠									-						232
4.4	The sphere				•	•						-										245
4.5	Solutions wit	h	cro) 88	fl	0%	r	•	•	-	-	•	•		•	•						254

V. THE THEORY OF THIN SHOCK LAYERS

5.1	Basic concepts						•	•	,		264
5.2	Successive approximation schemes										272
5.3	Constant-streamtube-area approximation										280
5.4	Two-dimensional and axisymmetric blunt-faced bodies								÷		298
5.5	Quasi wedges and quasi cones				÷		Ì	Ì			320
5.6	Conical bodies					÷		÷			323
5.7	General blunt-faced bodies and related similitudes					_		2			342
5.8	Integral methods		_								355
5.9	Newtonian separation				•	·	•	·		•	366
5.10	Nonequilibrium flows	•	•	•••	•	•	•	•	•	•	390
		•	٠	• •	•	٠	•	٠	•	•	200

VI. NUMERICAL METHODS FOR BLUNT-BODY FLOWS

6.1	Nature of the problem					391
6.2	Streamtube-continuity methods					402
6.3	Method of integral relations and polynomial approximation					407
6.4	Relaxation techniques and the unsteady approach method.					438
6.5	The inverse problem			-		448
6,6	Procedures with nonequilibrium.					472

VII. OTHER METHODS FOR LOCALLY SUPERSONIC FLOWS

7.1	Method of characteristics					•				•	•				-	480
7.2	Shock-expansion theory	•	•	•			٠	•				-	•			497
7.3	Tangent-wedge and tangent-cone		•		·		•	•				•				522

xiv

7.4 Conical flows	xv										TS	EN	NT	CO:	•									
Cited References ,	· · · 526 · · · 536	 				-	 				•		•		• •	-	•	•	W8	flo	ım	flows illib r i	Conical f Nonequi	.4 .5
	545	• •	•	•	•	•	• •	•	•	•	•	•	•	•		•	•	•			•	nces	d Referen	Cite
SYMBOL INDEX	575	• •	•	•	•	•		•	•		•	•	•				•	•			•	ex.	BOL INDE	YM
Author Index	587	•••	•		•		• •	•	•		•	•	•			•	٠	•	•		٠	ex.	HOR INDE	UTI
SUBJECT INDEX	592	•••	•	•	•	•		•	•	. •	•	•	•	•		•	•	•	•		•	EX.	ect Inde	UBJ

.

.