Table of Contents

Preface	xiii
Acknowledgments	xvii

Part I

DISCRETIZATIONS OF THE PRIMITIVE VARIABLE FORMULATION

1	A Primitive Variable Formulation	3
	1.1 Function Spaces, Norms, and Forms	4
	1.2 A Galerkin-Type Weak Formulation	7
2	The Finite Element Problem and the Div-Stability	
	Condition	9
	2.1 The Discrete Finite Element Problem	9
	2.2 The Div-Stability Condition	10
	2.3 Error Estimates and Other Results Concerning the	
	Approximate Solution	13
	2.4 Verifying The Div-Stability Condition	16
	2.5 Examples of Unstable Spaces Including the	
	Bilinear-Constant Pair	21

3	Finite Element Spaces	25
	3.1 Piecewise Linear and Bilinear Velocity Fields	26
	3.2 The Taylor-Hood Element Pair	31
	3.3 Bubble Elements, the $Q_2 - P_1$ Element Pair, and	
	Other Elements of Interest	35
	3.4 Fourth Degree or Higher Piecewise Polynomial	
	Velocity Spaces	37
	3.5 Circumventing the Div-Stability Condition	42
	3.6 Divergence Free and Mass Conserving Elements	46
	3.7 Three-Dimensional Elements	48
	3.8 Remarks on the Choice of Finite Element Spaces	50
4	Alternate Weak Forms, Boundary Conditions, and	
	Numerical Integration	53
	4.1 Alternate Formulations of the Convection Term	53
	4.2 Inhomogeneous Velocity Boundary Conditions	54
	4.3 Alternate Boundary Conditions and Formulations of	
	the Viscous Term	57
	4.4 The Effects of the Use of Numerical Quadratures	63
5	Penalty Methods	69
	5.1 The Penalty Method for the Continuous Problem and	
	Its Discretization	70
	5.2 The Discrete Penalty Method	73

Part II

SOLUTION OF THE DISCRETE EQUATIONS

6	Newton's Method and Other Iterative Methods	81
	6.1 Newton's Method	81
	6.2 A Fixed Jacobian Method	84
	6.3 A Simple Iteration Method	86
	6.4 Broyden's Method	88
	6.5 A Solution Method Using an Equivalent Optimization	
	Problem	91
7	Solving the Linear Systems	95
	7.1 Reducing the Number of Unknowns	96
	7.2 A Substructuring Method	98

viii

Table of Contents	ix
8 Solution Methods for Large Reynolds Numbers	105
8.1 Continuation Methods	105
8.2 The Reduced Basis Method	108

Part III TIME-DEPENDENT PROBLEMS

9	A Weak Formulation and Spatial Discretizations	117
	9.1 A Weak Formulation for the Time-Dependent	
	Problem	117
	9.2 Spatial Discretizations	119
10	Time Discretizations	123
	10.1 Single-Step Fully Implicit Methods	124
	10.2 Semi-Implicit Single-Step Methods	125
	10.3 Backward Differentiation Multistep Methods	126
	10.4 A Class of Semi-Implicit Multistep Methods	128

Part IV

THE STREAMFUNCTION-VORTICITY FORMULATION

11	Algo	orithms for the Streamfunction–Vorticity	
	Equ	ations	135
	11.1	Boundary Conditions for the Streamfunction-	
		Vorticity Equations	136
	11.2	Function Spaces and Forms	139
	11.3	A Weak Formulation and Its Associated Natural	
		Boundary Conditions	141
	11.4	Finite Element Discretizations	142
	11.5	The Recovery of the Pressure Field	144
	11.6	Available Error Estimates	145
12	Solu	tion Techniques for Multiply Connected	
	Don	ains	149
	12.1	Newton's Method With the Use of Semi-Local	
		Basis Functions	150
	12.2	Solution Methods Using Only Local Basis	
		Functions	151

Part V THE STREAMFUNCTION FORMULATION

13	Algo	orithms for Determining Streamfunction	
	App	roximations	157
	13.1	Weak Formulations for the Streamfunction	
		Equations	158
	13.2	Finite Element Spaces	159
	13.3	Error Estimates	163
	13.4	Recovery of the Velocity and Pressure	165

Part VI EIGENVALUE PROBLEMS CONNECTED WITH STABILITY STUDIES FOR VISCOUS FLOWS

14	Energy Stability Analysis of Viscous Flows	171
	14.1 The Eigenvalue Problem Associated with	
	Energy Stability	171
	14.2 Finite Element Approximations	175
15	Linearized Stability Analysis of Stationary Viscous	
	Flows	177
	15.1 The Eigenvalue Problem Associated with	
	Linearized Stability	177

15.2 Finite Element Approximations 178

Part VII EXTERIOR PROBLEMS

16	3 Truncated Domain-Artificial Boundary Condition		
	Met	hods	183
	16.1	Truncated Domain Problems	183
	16.2	Function Spaces	184
	16.3	Weak Formulations and Error Estimates for the	
		Truncated Problems	186
	16.4	Finite Element Approximations	188

Part VIII

NONLINEAR CONSTITUTIVE RELATIONS

17	7 A Ladyzhenskaya Model and Algebraic Turbulence		
	Models	193	
	17.1 A Ladyzhenskaya Model and Its Relation to		
	Algebraic Turbulence Models	193	
	17.2 Finite Element Approximations	196	
18	Bingham Fluids	201	
	18.1 Variational Inequalities Associated with		
	Bingham Fluids	201	
	18.2 Finite Element Approximations	204	

Part IX

ELECTROMAGNETICALLY OR THERMALLY COUPLED FLOWS

19	Flows of Liquid Metals	209
	19.1 A Coupled Navier-Stokes-Maxwell Equation Model	209
	19.2 Finite Element Approximations	211
	19.3 Iterative Solution Techniques	213
20	The Boussinesq Equations	217
	20.1 The Boussinesq Model for Thermal Conduction	
	in Fluids	217
	20.2 Finite Element Approximations	219
	20.3 Iterative Solution Techniques	221

Part X

REMARKS ON SOME TOPICS THAT HAVE NOT BEEN CONSIDERED

21 Problems, Formulations, Algorithms, and Other Issues	
That Have Not Been Considered	227
Bibliography	241
Index of Symbol Definitions	259
Author Index	261
Subject Index	265