CONTENTS

1. Fundamental equations of frictionless compressible flow 1 2. Bernoulli's equation 2 3. The equations of vorticity 4 4. The velocity potential 6 5. The stream function 6	<i>ige</i> xi
CHAPTER I GENERAL PRINCIPLESI1. Fundamental equations of frictionless compressible flowI2. Bernoulli's equationI3. The equations of vorticityI4. The velocity potentialI5. The stream functionI	iii
1. Fundamental equations of frictionless compressible flow2. Bernoulli's equation3. The equations of vorticity4. The velocity potential5. The stream function	٤V
2. Bernoulli's equation23. The equations of vorticity44. The velocity potential65. The stream function8	1
3. The equations of vorticity44. The velocity potential65. The stream function8	1
4. The velocity potential 6 5. The stream function 8	2
5. The stream function	4
	6
6. Characteristics	8
	8
7. Plane potential flow 1:	13
8. Examples 14	15
	16
T	18
11. Some remarks on the formulation of boundary value problems in subsonic and super- sonic flow 15	18
12. A method of derivation of the approximate equations 22	22
CHAPTER II SIMPLIFIED EQUATIONS AND THE SIMILARITY RULE FOR TRANSONIC FLOW 26	26
1. Preliminary remarks	26
2. The Prandtl-Glauert equations 26	26
3. The simplified differential equations of flow 28	28
4. The shock conditions 31	31
5. The boundary conditions 34	34
6. The similarity rule 38	38
7. Applications of the similarity rule 41	41
8. A simplified method of description of the flow 42	42
9. The equations of continuity and momentum for transonic flow 43	43
CHAPTER III THE LINEARISED THEORY OF TRANSONIC FLOW 46	46
1. Preliminary remarks 46	46
2. The linearised theory of two-dimensional and axisymmetric transonic flows 40	46 '
3. Three-dimensional flows	49
4. A body of finite thickness 52	52
5. The linearised theory of non-steady transonic flow 5.	55
6. The limits of applicability of the linearised theory 65	63
vii	

viii	CONTENTS	
CHAPTER IV EX	ACT SOLUTIONS OF THE POTENTIAL EQUATION OF TRANSONIC FLOW	
1. Introducto	ry remarks	
	n a De Laval nozzle	
3. The paralle	el sonic jet	
CHAPTER V FUN	DAMENTALS OF THE HODOGRAPH TRANSFORMATION	
1. The equati	ons in the hodograph plane	
2. The Jacobi	ian of the hodograph transformation	
3. Limiting li	nes	
4. Chaplygin'	s particular solutions	
5. The solution	on of a boundary value problem	
6. Approxima	te representations of Chaplygin's solutions	
7. Tricomi's e	equation	
8. Examples	of hodograph transformations	
9. Branch line	es in the hodograph plane	
10. The lost so	lutions	
11. Boundary	value problems in the hodograph plane	
	SCUSSION OF TRANSONIC FLOWS ON THE BASIS OF THE HODOGRAPH	
1. Introducto		
	rge from a vessel	
	round a sharp corner	
-	flow past a wedge	
-	sis of the flow near the edge of a wedge with an attached shock	
	with curved surfaces	
	from an attached to a detached shock	
8. Forked sho		
	e of forked shock	
10. The meani	ng of the "second" solution for the supersonic flow past a wedge	
CHAPTER VII P.	ARTICULAR SOLUTIONS OF TRICOMI'S EQUATION	
	s particular solutions	
	vpe of particular solutions	
	e form of solution	
4. The G solu	tions	
5. The specia		
6. Relationsh	ips between solutions for various values of μ	
7. Approxima	ate expressions for large values of $\mid \mu \mid$	
8. The Jacob	ian of the above particular solutions	
9. Systems of	f particular solutions	
	entation of appropriate solutions of Tricomi's equation by the sup	e
position	of particular solutions constructed from eigenfunctions	
	unctions and eigenvalues in the limiting case of $c_2 \rightarrow 1$	

CONTENTS	ix Page
12. The representation of an arbitrary function in the limiting case $c_2 \rightarrow 1$	192
13. The expansion of a solution ψ in terms of particular solutions	196
	204
15. The particular solutions of Falkowich	206
Chapter VIII Flows with $M=1$	212
1. General considerations	212
2. The hodograph representation	213
3. An example of flow with $M = 1$	217
4. Sonic flow past a wedge	225
5. The interpretation of certain solutions corresponding to other values of μ	228
6. Unsymmetrical profiles at $M = 1$	230
7. The flow past an inclined wedge	230
8. The boundary value problem for an arbitrarily shaped profile at a small angle of attack and related problems	f 238
9. The inclined flat plate at $M = 1$	241
10. Particular solutions which can be calculated by similar methods	253
CHAPTER IX FLOW FIELDS WHICH DEVIATE ONLY SLIGHTLY FROM FLOWS WITH MACH NUMBERS OF UNITY	1 258
1. Introductory discussion	258
$2. \ {\bf Examples of flows which deviate only slightly from a flow with {\bf Mach number of unity}$	259
3. Solutions which satisfy the boundary conditions at the surface of the body	261
4. The boundary conditions in the vicinity of the point 0	263
5. Flows which are antisymmetric in ψ with respect to the x axis	267
6. Unsymmetric flow fields	26 8
7. The expansion of a flow field in terms of the deviation of the undisturbed flow Mach number from unity	1 271
8. The flow past a rhombic profile in a choked closed-circuit wind tunnel	274
9. The flow past a rhombic profile in a free jet at critical velocity and the flow in a	a 281
supersonic unbounded air stream	281 282
10. The flat plate in a choked closed-circuit wind tunnel 11. Further cases of two-dimensional flow fields	282 287
11. Further cases of two-dimensional now helds	201
Chapter X Special Cases in which the Particular Solutions given by Eq. VII. 3 (3) are Employed) 291
1. The hodograph solution at a non-degenerate point of the sonic line	291
2. The reflection of a discontinuity at the sonic line	292
3. The flow in the throat of a De Laval nozzle	298
4. Discussion of special boundary value problems of Tricomi's equation	299
CHAPTER XI AXISYMMETRIC FLOWS	306
1. Flows with $M = 1$	306
2. An improved analysis of the solution at infinity	314
3. Applications	319

x	CONTENTS		
	4. Special two-dimensional and axisymmetric flow with compression shocks 5. Applications	Page 322 323	
	6. Description of flow fields whose approach Mach number is close to 1	329	
в	IBLIOGRAPHY	333	
	1. Articles cited in the text	333	
	2. Textbooks	336	
	3. Additional references	336	
In	INDEX		