VOLUME I

I. INTRODUCTION. REAL AND IDEAL FLUIDS.

1.	Real and ideal fluids .	•	•	•	•		1
2.	The measure of viscosity	•					2
3.	The viscosity and some ot	her proper	ties of ga	ses acco	rding to	o the	
	kinetic theory	•	•	•	•		8
4.	The compressibility of air	•					11
5.	Kinematic viscosity and	Reynolds	number.	Force	coeffici	ents.	
	Scale effect. Non-dimer	nsional par	ameters	•	•		11
6.	Steady flow through a circ	cular tube		•	•		19
7.	Some results of ideal fluid	l theory, a	nd compa	arison w	ith obse	erva-	
	tion	•			•		21
8.	Vorticity and circulation			•	•		26
9.	The motion of inviscid flu	ids with ci	rculation	. Lift.	•		31
10.	The motion of inviscid fl	uids with o	concentra	ted vor	ticity.	Drag	36
11.	The motion of inviscid fl	uids with	concentra	ated vo	rticity.	The	
	cast-off vortex and the	production	of circul	ation	•		40
12.	The motion of inviscid flu	ids with co	ncentrat	ed vorti	city. T	hree-	
	dimensional aerofoil the	eory .	•	•	•		42
13.	The motion of a solid body	y in a unifo	rmly rota	ting flu	id.		46
14.	Inviscid fluid theory and o	observatior	n in real f	luids			48
	•						

II. INTRODUCTION. BOUNDARY LAYER THEORY.

15. Boundary layer theory. Flow along a solid surface	•	. 50
16. Boundary layers in the inlet lengths of pipes .		. 54
17. Theoretical arguments for the existence of boundation	ary	layers.
Diffusion of vorticity		. 55
18. Separation of the forward flow. Flow through a diffe	aser	. Flow
along a curved surface	٠	. 56
19. Motion past a bluff symmetrical obstacle .		. 59
20. The wake behind a bluff symmetrical obstacle .	•	. 62
21. Form drag and skin-friction		. 65
22. The production of circulation		. 66
23. Turbulence in a pipe		. 69
24. Turbulence in boundary layers. Sharp fall in the drag	coe	fficient.
Interference effects. Scale effect	•	. 71
25. Stream-line bodies. Aerofoils. The stall .		. 74
26. Artificial prevention or delay of separation .		. 78
27. Flow past a rotating cylinder		. 81
28. Curved streams. Secondary flow		. 84
29. Some further miscellaneous examples of flow .		. 88

III. THE EQUATIONS OF VISCOUS FLUID FLOW.	
30. Introduction	90
31. The equation of continuity	90
32. The rate-of-strain components and the vorticity	90
33. The stress components	93
34. Relations between the stress and rate-of-strain components	94
35. The equations of motion	95
36. Equations for the rates of change of circulation and vorticity $.$	97
37. The rate of dissipation of energy	98
38. Dynamical similarity	99
39. General orthogonal coordinates	101
40. Cylindrical polar coordinates	103
41. Spherical polar coordinates	104
42. Examples of exact solutions of the equations of motion. Two-	
dimensional steady flow between non-parallel plane walls \qquad .	105
43. Examples of exact solutions of the equations of motion. The flow	
due to a rotating disk	110
APPENDIX. The equations for the stream-function in general ortho-	
gonal coordinates	114
IV. THE MATHEMATICAL THEORY OF MOTION IN A	
BOUNDARY LAVER	
14 Boundary laws theory True dimensional metion Flore along a	
44. Boundary layer theory. Two-dimensional motion. Flow along a	116
45 Flow along a curred wall	110
45. Flow along a curved wall	119
40. Non-unnehisional form of the theory	120
48 Boundary conditions Boundary layer thickness Displacement	144
thickness	122
49. Some general deductions and remarks for flow against a pressure	122
gradient and flow past obstacles	123
50. Transformation of the equations for steady motion	126
51. Motion symmetrical about an axis	128
52. The momentum equation of the boundary layer	131
53. The flow along a flat plate	135
54. Steady flow in the boundary layer along a cylinder near the for-	
ward stagnation point. Solution when $u_1 = cx^m$.	139
55. Steady flow in the boundary layer along a surface of revolution	
near the forward stagnation point	142
56. Steady two-dimensional flow along a wall in a converging canal	143
57. The spread of a jet	145
58. Approximate methods of calculating steady two-dimensional	
boundary layer flow. Expansion in series	148
59. Approximate methods of calculating steady two-dimensional	
boundary layer flow. Step-by-step methods	153

xviii

(30.	Approximate methods of calculating steady two-dim	ensiona	1	150
(31.	Application of the momentum equation for steady flo	w in the	• Ð	190
		boundary layer at the surface of a solid of revolution			16 3
()2.	boundary layer flow. Outer and inner approximate solu	itions		164
6	33.	Approximate methods of calculating steady two-dim	iensiona	1	
		pressure gradient	. a nnea:	r •	173
6	34.	Approximate methods of calculating steady two-dim	iensiona	1	
		boundary layer flow. Expansion in powers of y; gener of the solution with $u_1 = cx^m$: approximate solution	alization	1 1	
		form for a nearly linear velocity distribution in an ac	celerated	1	
		region ; an iterative process	• .	•	178
ť	55.	Boundary layer growth. Motion started impulsively from	rest	•	181
ť	56. 	Boundary layer growth. Uniformly accelerated motion	•	•	186
ť	57.	Boundary layers for periodic motion	•	•	187
v.	т	URBULENCE.			
6	38.	The mean flow			191
6	39.	The Reynolds stresses	. .		192
7	70.	Example. The Reynolds shearing stress for pressure flow	betweer	1	
		parallel planes	•	•	192
7	71.	Reynolds's equations of motion in cylindrical polar coord	inates .	•	193
7	72.	Coefficients of correlation	• •	•	194
7	73.	Reynolds's energy criterion	•	•	194
7	74.	Stability for infinitesimal disturbances	•	•	196
7	75.	The stability of flow between rotating cylinders .	, .	•	196
7	76.	The stability of two-dimensional laminar flow .		•	197
7	77.	Isotropic turbulence		•	200
7	78.	The effect of contraction on turbulence in a wind tunnel		•	201
7	79.	Statistical theories of turbulence	• •	•	203
8	30.	Mixture length theories	•	•	205
8	31.	The momentum transfer theory		•	206
8	32.	Hypotheses for predicting <i>l</i>		•	208
2	33.	The vorticity transfer theory		•	209
5	34.	The generalized vorticity transfer theory	•	•	210
5	35.	The modified vorticity transfer theory		•	213
8	36.	Diffusion in turbulent motion		•	214
2	57.	Discontinuous diffusion from a source in one dimension	•	•	210
2	58.	Diffusion by continuous movements		•	217
۲ م	99. M	The dissipation of operation in turbulent metics	, ,	•	440 990
ې د	7U.	Dissipation of energy in turbulent motion .		•	220 991
2 (71. 19	Polationship between) and the scale of the turbulence.		•	225
2 (74.)2	The Bounder number of turbulence	•	,	226
ĩ	, U,	The regulation multiplet of furbulence		•	

xix

94.	The law of decay of turbulence behind grids	•	•	. 227
95.	An experimental verification of isotropy in	turbulen	ice behind	£
	grids	•	•	. 228
96.	The effect of density gradient on stability	•	•	. 229
97.	Diffusion in a turbulent field with a density g	radient	•	. 231
	Additional References	•	•	. 232
		ACTIONT		-
VI. E	MEASUREMENTAL APPARATUS AND	METH	0.08 01	ł.
98.	Introduction	•	•	. 234
Sectio	ON I. WIND TUNNELS, WATER TANKS, AND	WHIRL	ING ARM	s.
99.	Wind tunnels		•	. 234
100.	Open circuit tunnels			. 234
101.	Closed circuit tunnels .			. 235
102.	Compressed air tunnels			237
103	Turbulence in wind tunnels and its effects	•	•	238
104	The sugmentation of turbulence in wind turb	• nels	•	240
104.	The degree of turbulence desirable in a wind	tunnal	•	. 2±0 941
100.	Force measurements	vanner	•	. 41
100.	Force measurements	·	•	. 444
107.	Dress of a model aeroion or complete aerop	lane	•	. 440
108.	Drag of stream-line bodies	•	•	. 240
109.	Force measurements in the compressed air tu	innel	•	. 246
110.	Water tanks and whirling arms	•	•	. 246
Sectio	ON II. VELOCITY AND PRESSURE MEASURE	MENTS.		
111.	The pitot-static tube. Total-head and static-p	ressure t	ubes	. 248
112.	Small total-head tubes			. 254
113.	Measurement of the distribution of normal	pressur	e on soli	d
	bodies	•	•	. 255
114.	Forces due to normal pressures	•	•	. 256
115.	Prediction of drag from wake measurements	•	•	. 257
116.	The determination of wind direction .	•	•	. 263
117.	Electrical methods. The hot wire anemometer	e .		. 265
118.	Electrical methods. Hot wire direction-meters	s .		. 267
119.	Electrical methods. Measurements of speed	variation	s in turbu	1-
	lent flow			. 268
120.	Electrical methods. Correlation measuremen	ts in tur	bulent flo	w 269
121.	Electrical methods. Determination of an e	nergy st	oectrum i	n
	turbulent flow			. 273
122.	Manometers. The Chattock manometer	•		. 274
123.	Manometers. Large-range micromanometers	•	•	276
124	Manometers. The inclined tube manometer	•	•	277
125	Manometers. Multitube manometers	•	•	277
126	Surface tubes	•	•	277
		•	•	

xx

SECTION III. VISUALIZATION AND PHOTOGRAPHY OF FLUID MOTION.	•
127. Stream-lines, filament lines, and particle paths	280
128. Miscellaneous methods of examining flow in a boundary layer.	
Wool tufts; coating the surface; double refraction .	281
129. Air flow. Smoke	282
130. Air flow. The smoke tunnel	283
131. Air flow. Smoke photography: low and high speeds .	285
132. Air flow. Change of refractive index	288
133. Air flow. Hot wire shadows	289
134. Air flow. Spark shadows. The 'Schlieren' method. Kinemato-	
graphy. The determination of velocity distributions and	
measurements of turbulence: accuracy	290
135. Water flow. Water channels and tanks	292
136. Water flow. The ultramicroscope. Ultramicroscope photography	294
VII. FLOW IN PIPES AND CHANNELS AND ALONG FLAT	
PLATES.	
137. Introduction	297
SECTION I LAMINAR FLOW	
129 Flow through a streight nine of aircular areas section	908
130. Flow infough a straight pipe of circular cross-section .	200
140. Two dimensional flow through a straight channel	200
141. Two-dimensional flow in the inlet length of a straight channel	300
141. Two-unitensional now in the intertengul of a straight channels	311
142. Flow through aurward pipes	312
140. Two dimonsional flow through our rod channels	315
145. Flow along a flat plate Roughness	316
	010
SECTION II. THE TRANSITION FROM LAMINAR TO TURBULENT FLOW.	
146. The transition to turbulence in smooth pipes and channels	319
147. The effect of roughness on the critical Reynolds number .	320
148. The entry length. Experimental results for smooth entry condi-	
tions in straight pipes	320
149. The instability of laminar flow in curved channels .	322
150. Phenomena associated with a disturbed entry. Schiller's theory	
of the transition to turbulence in straight pipes and channels .	323
151 The transition to turbulence in flow along a flat plate $\ .$	325
Additional references	330

xxi