CONTENTS

VOLUME II

VIII. FLOW IN PIPES AND CHANNELS AND ALONG FLAT PLATES (continued).

SECTION III. TURBULENT FLOW.

152. Calculations of velocity distributions of mean flows	331
153. The velocity distribution near a wall: momentum transfer theory.	
Experimental results from flow through smooth circular pipes	331
154. The logarithmic resistance formula for flow through a smooth	
pipe or channel. The relation between the velocity at the axis	
and the average velocity over a section of a pipe	336
155. Blasius's resistance formula for smooth pipe flow: power formulae	
for the velocity distribution	339
156. Velocity distributions in two-dimensional pressure flow between	
smooth or rough parallel walls, and in flow through a smooth	
or rough circular pipe: momentum transfer theory	340
157. The vorticity transfer theory and the velocity distributions for	
pressure flows between parallel walls and through circular pipes	
(smooth or rough surfaces)	344
158. The similarity theory	347
159. Velocity distributions for pressure flows between parallel walls	
and through circular pipes on the similarity theory (smooth or	
rough surfaces)	352
160. Experimental determination of the mixture length	356
161. Straight pipes of non-circular cross-section. Resistance. Secon-	
dary flow	358
dary flow 162. The inlet length for turbulent flow in smooth circular pipes	358 360
dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a	358 360
dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate	358 360 361
dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk	358 360 361 367
dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat	358 360 361 367
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 	358 360 361 367 367
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 	358 360 361 367 367 371
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow 	358 360 361 367 367 371
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes . 	358 360 361 367 367 371 376
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat 	358 360 361 367 367 371 376
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 	358 360 361 367 371 376 380
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 169. Turbulent flow under pressure in curved channels 	358 360 361 367 371 376 380 382
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 169. Turbulent flow under pressure in curved channels 170. Turbulent flow between coaxial rotating cylinders 	358 360 361 367 371 376 380 382 385
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 169. Turbulent flow under pressure in curved channels 170. Turbulent flow between coaxial rotating cylinders 171. Pressure loss in curved pipes. Curved flow along a plane wall 	358 360 361 367 371 376 380 382 385 390
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 169. Turbulent flow under pressure in curved channels 170. Turbulent flow between coaxial rotating cylinders 171. Pressure loss in curved pipes. Curved flow along a plane wall 172. Velocity fluctuations in turbulent flow through a pipe 	358 360 361 367 371 376 380 382 385 390 393
 dary flow 162. The inlet length for turbulent flow in smooth circular pipes 163. Frictional intensity and resistance for turbulent flow along a smooth flat plate 164. The resisting moment on a smooth rotating disk 165. The calculation of the velocity distribution for flow along a flat plate on mixture length theories 166. Flow in convergent and divergent channels 167. The resistance and the velocity distribution near a wall in flow through rough pipes 168. The frictional intensity and resistance for flow along rough flat plates. The 'equivalent sand roughness' 169. Turbulent flow under pressure in curved channels 170. Turbulent flow between coaxial rotating cylinders 171. Pressure loss in curved pipes. Curved flow along a plane wall 172. Velocity fluctuations in turbulent flow through a pipe 173. The distribution of the dissipation of energy in a channel over its 	358 360 361 367 371 376 380 382 385 390 393

CONTENTS

174. Measurements of correlation between the longitudinal turbulent	ò
velocity components at the axis and elsewhere in flow through	1
apipe	396
Additional references	399
IX. FLOW ROUND SYMMETRICAL CYLINDERS. DRAG.	
175. Introduction	401
176. The effect of changes of thickness on the drag of a symmetrical	1
aerofoil .	401
177. Symmetrical aerofoils. Normal pressure	403
178 Symmetrical aerofoils. Skin-friction drag and form drag	406
179. The intensity of skin-friction at a symmetrical aerofoil	409
180. The boundary layer thickness and the velocity distribution in the	•
boundary layer at a symmetrical aerofoil	410
181. The effect of shape on drag and on scale effect	412
182. The effect of roughness on the drag of an aerofoil	416
183. Flow past a circular cylinder	417
184. The drag of a circular cylinder	418
185. Changes in the pressure distribution at a circular cylinder, and in the	•
drag coefficient, for a motion started from rest. Oscillating lift	419
186. The frequency with which vortices are shed from a circular	
cylinder	421
187. The normal pressure at a circular cylinder	421
188. The skin-friction drag and the form drag of a circular cylinder	,
below the critical range of Reynolds numbers	424
189. The intensity of skin friction at a circular cylinder	426
190. The velocity distribution in the boundary layer at a circular	
cylinder	429
191. The effect of turbulence in the stream on the drag of a groular	
avlinder in the critical region	490
192. The effects of roughness and of concentrated excressences on the	
drag of a circular cylinder in the critical region	432
193. Theoretical results for laminar boundary layer flow at a circular	
cylinder	434
194. Semi-empirical calculations for turbulent boundary layers	
Application to a circular cylinder	436
195. Cylinders of finite span. The effect of aspect ratio on drag	439
Additional references	440
A. FLOW FAST ASIBLELE RICAL CILINDERS, ARROLULS	•
196. Introduction	441
197. The lift of aerofoils, and scale effect	442
198. The effect of turbulence in the stream on the maximum lift of	
aerofoils	445

viii

		CONTENTS

199.	The drag of a	profoils, an	d scale offic	et .		•	. 44	7
200.	The lift/drag	atio for as	rofoils.		•		. 45	0
201.	The lift and d	irag of aer	ofoils at n	egative in	cidence	s, and so	le	
	effect	· ·		•••	•	· •	. 45	1
202.	The lift and dr	ag of aerofe	ils with fie	ps.		•	. 45	2
203.	The normal p	ressure dis	tribution a	t the sur	face of	an aerofo	oil.	
	The stream	lines of the	e flow past	an aerofe	oil, and	the circu	la-	
	tion. The p	osition of th	ne forward	stagnation	a point	•	. 45	4
204.	The growth of	the circula	tion.	•	-	•	. 45	8
205.	The intensity	of skin-fric	tion at the	surface o	f an aer	ofoil	. 46	1
206.	Effect of shap	e on the p	ressure dis	ribution a	at the s	urface of	an	
	aerofoil						. 46	3
207.	Influence of ab	ape on the	scale effect	on the lif	t of an a	erofoil	. 46	4
208.	The velocity d	listribution	in the boy	mdary lay	er at th	e surface	of	
	an aerofoil.	The transi	tion to tur	nilence	•		. 46	6
209.	The flow at th	e stall. For	ward and	rear separ	ation. 7	The 'bubb	le'	
	of turbulence	. 99		•	•		. 46	9
210.	The hysteresis	loop in th	e lift-incid	ence curv	e for a s	stalled ac	-07	
	foil .		•			•	. 47	1
211.	The effect of a	arface rou	ghness on	the drag a	and the	lift of ae	-07	
	foils		•				. 47	3
212.	Lift calculatio	ns by boun	dary layer	theory fo	r lamina	r bounds	ry	
· · · ·	layers. App	plication to	an ellipti	oylinder			. 47	8
213.	Semi-empirice	1 lift calcu	lations for	turbulen	t bound	lary laye	rs.	
	Application	to an ellipt	ic cylinder				. 48	1
	Additional ref	erences					. 48	9
T 1	TOW DAST			0 0 0 10 10 A	TURIO	NT .		
AL. 1	LOW FASL	SOTTO D	ODIES O		LUTIO	LN.		_
214.	Introduction	• •	•	•	•	•	. 49	I
Q.m.oner.	T Common							
ORUTR	JN I. OPHERE	ha -	_					
215.	Drag at low R	eynolds nu	imbers	. •	•	•	. 49	1
216.	Drag. Interfe	rence. The	e critical r	inge of Re	eynolds	numbers	. 49	3
018	Distributions	of normal j	pressure as	d akin-fri	otion	•	. 49	6
217.						_	. 49	8
217. 218.	Laminar boun	dary layer	calculatio	os .	•	•		
217. 218. 219.	Laminar boun The effect of t	dary layer urbulence	calculatio on the crit	ns . ical range	of Rey	nolds nu	na-	-
217. 218. 219.	Laminar boun The effect of t bers. The sp	dary layer urbulence phere as a	calculatio on the crit turbulence	ns . ical range indicator	of Røy	nolds nu	na- . 49	9
217. 218. 219. 220.	Laminar bour The effect of t bers. The s Surface rough	dary layer urbulence phere as a ness	calculatio on the crit turbulence	ns . ical range indicator	of Rey	nolds nu	na- . 49 . 50	9 3
217. 218. 219. 220. 221.	Laminar boun The effect of t bers. The s Surface rough Lift and drag	dary layer orbulence phere as a ness coefficients	calculatio on the crit turbulence s of a rotat	ns . ical range indicator ing sphere	of Rey	nolds nu	na- . 49 . 50 . 50	9 3 3
217. 218. 219. 220. 221.	Laminar bour The effect of t bers. The s Surface rough Lift and drag	dary layer turbulence phere as a ness coefficients	calculatio on the crit turbulence of a rotat	ns . ical range indicator ing sphere	of Rey	nolds nu	. 49 . 50 . 50	9 3 3
217. 218. 219. 220. 221. SECTIO	Laminar bour The effect of t bers. The s Surface rough Lift and drag	ndary layer turbulence phere as a ness coefficients r SHAPES.	calculatio on the crit turbulence s of a rotat	ns . ical range indicator ing sphere	of Rey	nolds nu	. 49 . 50 . 50	9 3 3
217. 218. 219. 220. 231. SECTIO 222.	Laminar bour The effect of 1 bers. The s Surface rough Lift and drag N II. AIRSHI The transition	ndary layer turbulence phere as a ness coefficients P SHAPES. to turbule	calculatio on the crit turbulence of a rotat	ns . ical range indicator ing sphere boundary	of Rey	nolds nu	na- . 49 . 50 . 50	9 3 3 5
217. 218. 219. 220. 221. SECTIO 222. 223.	Laminar bour The effect of 1 bers. The s Surface rough Lift and drag N II. AIRSHI The transition Form drag	dary layer turbulence phere as a ness coefficients r SHAPES. to turbule	calculatio on the crit turbulence s of a rotat	ns ical range indicator ing sphere boundary	of Rey 8 7 layer	nolds nu		9 3 3 5 7
217. 218. 219. 220. 221. SECTIO 222. 223. 223. 224.	Laminar bour The effect of 1 bers. The s Surface rough Lift and drag NII. ARBSHI The transition Form drag The effect of f	dary layer purbulence phere as a ness coefficients P SHAPES. to turbule ineness rat	calculatio on the crit turbulence s of a rotat mos in the	ns ical range indicator ing spher boundary	of Rey 8 7 layer	nolds nu	. 49 . 50 . 50 . 50 . 50 . 50	9 3 5 7 7
217. 218. 219. 220. 221. SECTIO 222. 223. 224. 224. 225.	Laminar bour The effect of 1 bers. The s Surface rough Lift and drag NII. AIRSHI The transition Form drag The effect of f Skin-friction c	dary layer purbulence phere as a ness coefficients r SHAFES. to turbule ineness rat	calculatio on the crit turbulence s of a rotat mos in the io on drag	ns ical range indicator ing spher boundary	o of Rey s	nolds nu		9 3 5 7 7 9

ix

x	CONTENTS		
226.	The theoretical calculation of skin-friction drag		514
227.	Explorations of the flow in the boundary layer		519
228.	The distribution of normal pressure, and its effect on transition	ι.	523
229.	The effect of the state of the surface on the skin-friction drag	•••	524
	Additional references .		526
XII	BOINDARY LAVER CONTROL		
990	Introduction Section		
- 250. 021	Introduction. Succion .	•	529
201.	laver	ary	590
232.	Introduction. Motion of the solid wall	•	501
233.	The flow produced with houndary is ver control	•	591
234.	Pressure oradients and air mantities	•	800 991
235	Control with auxiliary norses Diffusions	•	000
	Control with auxilianty power. Diffusers	•	034
280.	control with auxiliary power. Succion or discharge under pi	res-	
927	Control without ouriliant normal. The datted	•	535
401.	Control without auxiliary power. The slotted wing	. •	542
400. 690	Control without suxmary power. The lownend ring	•	544
208.	Moving surfaces, Rotating cymders	٠	545
	Additional references	•	549
xm.	WAKES.		
240.	Small Reynolds numbers		550
241.	Vortex-layers	•	552
242.	The double row of vortices	•	KEQ.
243.	The double row of vortices. The calculation of the average d	*	557 557
244.	The double row of vortices. Stability Drog	Tag	8001
245.	The double row of vortices. The effect of channel walls	•	200
246.	The double row of vortices. Specing and maxime ratio	•	500
247	The frequency with which vortices are shad	•	901
248	Steady flow in a wake. The flat plate at size	٠	570
249.	The application of the Oseen approximation to the flow at gr	• eat	071
	clistances	-	574
250.	Three-dimensional wakes behind bluff obstacles	•	577
251.	The wake behind an aerofoil of finite span		580
252.	The turbulent wake behind a symmetrical cylinder	-	581
253.	The turbulent wake behind a row of parallel rods	. •	586
254.	The turbulent wake behind a body of revolution		588
255.	The turbulent spreading of jets		592
	Additional references	•	599
XIV.	HEAT TRANSFER (LAMINAR FLOW).		
256.	Introduction		803
257.	The equation of state	. •	100
268	The equation of continuity	•	800
		-	ouz

CONTENTS

259. The equations of motion		602
260. The energy equation		603
261. Dynamical similarity	•	607
262. The convection of heat in potential flow		609
263. Boundary layer equations		610
264. The momentum and energy equations for the boundary 1	ayer .	613
265. Boundary conditions		615
266. Laminar flow in a circular pipe. Wall at constant tempera	sture .	616
267. Laminar flow in a circular pipe with constant tempe	erature	
gradient		622
268. Forced convection in a laminar boundary layer at a fla	t plate	
along the stream		623
269. The reading of a thermometer in a moving fluid		627
270. Forced convection from a cylinder near the forward stag	nation	
point	•	631
271. Further solutions for forced convection in a boundary lay	er .	633
272. Forced convection from a circular cylinder		636
273. Free convection from a heated vertical plate		638
274. Other problems of free convection		643
-		
XV. HEAT TRANSFER (TURBULENT FLOW).		
275. Introduction		646
276. The equation of eddy heat transfer	•	646
277. Example. Flow between parallel walls with a constant te	mpera-	
ture gradient in the direction of flow		647
278. The mixture length theory	•	648
279. Revnolds's analogy between heat transfer and skin-fricti	on .	649
280. The extension of Revnolds's analogy		654
281. Comparison between theory and experiment for flow in t	oines .	658
282. Flow along a heated flat plate	- T -m -	660
283. The temperature distribution between rotating cylinders	•	661
284. The temperature distribution in the wake of a heated ov	linder	663
285. The temperature distribution in the wake behind a row of	heated	
Darallel rols		665
286. The wake behind a heated body of revolution	•	669
287. The temperature distribution in heated lets	•	672
Additional references for Chanters XIV and XV	•	678
	•	
NOTE ON THE CONDITIONS AT THE SUBFACE OF CONTACT OF A	. FT. 777	
WITH A SOLID RODY		676
	•	~ • •
INDEX OF AUTHORS	•	681
SUBJECT INDEX		687

xi