CONTENTS

PREFACE

page ix

г.	I INTRODUCTION Sound pulses	Ī
2.	The equations of motion	
	-	3
3.	The wave equation	5
4.	The effect of body forces	6
-	Boundary conditions	8
6.	Poisson's solution of the initial-value problem	9
	2 WAVE FRONTS AND CHARACTERISTICS	
I.	Introduction	13
2.	Space-time	14
3.	Characteristics and geometrical optics	15
4.	The uniqueness theorem; dependence and influence domains	20
5.	Diffraction	26
6.	Reflected fronts	30
	Appendix: The characteristics containing a given 2-space; caustics	3 3
	3 GEOMETRICAL ACOUSTICS	
1.	Introduction	37
2.	Weak solutions of the wave equation	40
3.	The propagation of discontinuities	42
4.	The propagation of algebraic infinities	46
5۰	Geometrical acoustics	48
6.	Geometrical acoustics in a homogeneous medium	51
7.	The transport equations of higher order	56
8.	The superposition principle	60
9.	Series expansions related to geometrical acoustics	62
	Appendix: The focusing of acoustic shocks	67

CONTENTS

4 THE APPLICATION OF GEOMETRICAL ACOUSTICS TO REFLEXION PROBLEMS

1.	Introduction	page 71
2.	Reflexion of a plane pulse	73
3.	Reflexion of a spherical pulse by a surface of revolution	79
4.	Series expansion of a reflected pulse	82
5۰	Reflexion of a spherical pulse by a paraboloid	86
6.	Reflexion of a plane pulse by a convex paraboloid	90
7.	Series expansion of the reflected pulse	96
8.	The refraction of a spherical pulse at a plane interface	99
	Appendix: The reflexion of a spherical acoustic shock wave	104

5 THE DIFFRACTION OF A PULSE BY A WEDGE

1.	Introduction	108
2.	The Green's function of the wedge	109
3.	Construction of the Green's function	111
4.	An alternative form of the Green's function	115
5۰	Diffraction of a plane pulse	120
6.	The half-plane	124
7.	Some diffraction problems related to the half-plane problem	130
	Appendix: Elementary solutions and Green's functions	134
	1. Elementary solutions	134
	2. Elementary solution of the wave equation in the absence of boundaries	135
	3. The uniqueness theorem for distributions that satisfy the wave equation	137
	4. The two-dimensional case	138
	5. Laplace transforms	139
	6. Reflexion problems; the Green's function	140
	7. Solution of the initial-boundary-value problem in terms of the Green's function	144

CONTENTS

6 Some other Diffraction Problems

1.	Introduction	<i>page</i> 147
2.	The Green's function of the circular cylinder	149
3.	The eigenfunction expansion	154
4.	The diffraction formulae	157
5.	Diffraction of a plane pulse	162
6.	The Green's function of the sphere	166
7.	Approximate evaluation of the diffracted field	170
8.	Geometrical optics in a stratified medium	174
9.	Pulse diffraction in a stratified medium	178
	Appendix: Asymptotic behaviour of the eigenvalues and eigenfunctions of the circular cylinder	184
	1. Convergence of the eigenfunction expansion	184
	2. Approximations for $K_{i\mu}(sr/c)$ when $\mu/s \sim I$	187
	3. The eigenvalues	189
	4. Asymptotic formulae for the \overline{F}_j	191
BJ	IBLIOGRAPHY	195

INDEX

201