Contents

Chapter 1

Vectors and Cartesian Tensors

1.1	Introduction	3
1.2	Index Notation of a Vector	4
1.3	Transformation Law of a Vector	6
1.4	Rules of the Index Notation and the Transformation Laws of	
	Cartesian Tensors	7
1.5	Addition and Subtraction of Vectors and Cartesian Tensors	
	Using the Index Notation	11
1.6	Scalar (or Dot) Product of Two Vectors	12
1.7	Vector (or Cross) Product of Two Vectors	13
1.8	Multiplication of Cartesian Tensors	15
1.9	Gradient of a Scalar Function of Position (or Scalar Field)	16
1.10	Divergence of a Vector Function of Position (or Vector Field)	17
1.11	Curl of a Vector Function of Position (or Vector Field)	19
1.12	The " ϵ - δ Identity"	19
1.13	The Line Integral and Stokes' Theorem	21
1.14	Conservative Vector Field and the Concept of a Scalar	
	Potential Function	24
1.15	Gauss' Theorem and Its Generalization to Tensor Fields	25
1.16	Green's Theorem	27
	Summary	28
	Problems	30

3

Chapter 2

Analysis	of Stress in a Continuum	34
2.1	The Continuum Approach	34
2.2	Definitions of Fundamental Properties	35

2.3	Classification of Continuous Media	36
2.4	Body Forces and Surfaces Forces	37
2.5	Components of Stress or Stress Tensor	38
2.6	Force and Moment Equations of Equilibrium	42
2.7	Transformation Law for the Components of Stress or	
	Stress Tensor	46
2.8	The Stress Quadric	49
2.9	Principal Stresses and Principal Axes	50
2.10	The Stress Vector and Normal Stress Referred to the	
	Principal Axes	54
2.11	Stress Invariants	55
2.12	The Stress Deviator Tensor	56
2.13	Maximum Shearing Stress	58
	Summary	61
	Problems	63

67

118

CHAPTER 3

Analysis of Deformation in a Continuum

67 Lagrangian and Eulerian Descriptions of Deformation or 3.1 Flow 3.2 The Comoving Derivative 69 70 3.3 Velocity and Acceleration 73 3.4 The Continuity Equation 79 3.5 Strain Tensors The Linear Rotation Tensor and Rotation Vector; 3.6 Analysis of Relative Displacements 84 3.7 Geometrical Meanings of the Components of the Linear 89 Strain Tensors 92 3.8 Principal Axis Theory for the Linear Strain Tensors Additional Properties of Linear Strain Tensors 3.9 94 98 3.10 The Linear Cubical Dilatation 99 3.11 Compatibility Equations for Linear Strain Components 3.12 The Rate of Strain Tensor and the Vorticity Tensor 103 3.13 The Rate of Rotation Vector and the Vorticity Vector 105 3.14 Properties of the Rate of Strain Tensor 107 3.15 Rate of Cubical Dilatation 109 3.16 Analogies Among the Stress, Strain, Rotation, Rate of Strain, 109 and Vorticity Tensors Summary 113 Problems 115

CHAPTER 4

Eulerian Forms of the Basic Physical Laws Governing the Motion of a Continuous Medium

4.1	Introduction	118
4.2	Law of Conservation of Mass and the Eulerian Continuity	
	Equation	122
4.3	The Momentum Integral Theorem and the Equation of Motion	123
4.4	Kinetic Equation of State	125
4.5	The First Law of Thermodynamics	128
4.6	The Second Law of Thermodynamics, Entropy Production,	
	and the Dissipation Function	133
	Summary	137

x

Chapter 5

Application to Solids

5.1 Introduction	140
Part I Linear Elasticity	
5.2 Assumptions and Basic Equations	141
5.3 Generalized Hooke's Law for An Isotropic, Homogeneous	
Solid	146
5.4 Compatibility Equations Expressed in Terms of the Stress	
Components for an Isotropic, Homogeneous, Linear,	
Elastic Solid	152
5.5 Classification of Types of Problems in Linear Elasticity	153
5.6 The Principle of Superposition	155
5.7 The Strain Energy Function	156
5.8 The Uniqueness Theorem	160
5.9 Saint Venant's Principle	161
5.10 Constitutive Laws for Anisotropic Elastic Solids	162
Part II Thermoelasticity	
5.11 Equations of State, the First Law of Thermodynamics, and	
the Coupled Heat Equation for an Isotropic, Homogeneous	
Thermoelastic Solid	166
5.12 Formulations of the Basic Equations	170
5.13 Irreversibility Due to Heat Conduction	172
Part III Viscoelasticity	
5.14 Constitutive Equations	172
Summary	174
Problems	178

Chapter 6

Application to Fluids

6.1	Introduction	181
6.2	Method of Description	181
6.3	Separation of the Stress Tensor and Fluid Pressure	182
6.4	The Equation of Continuity	185
6.5	The Equations of Motion	187
6.6	Fluid Statics	190
6.7	Vorticity-Stream Surfaces for Inviscid Flow	193
6.8	p, p-Relationship and the Work-Kinetic Energy Equation	195
6.9	Irrotational Flow and the Velocity Potential	198
6.10	Kinetic Equation of State and the First Law of	
	Thermodynamics	202
6.11	Second Law of Thermodynamics. Irreversibility Due to	
	Material Dissipation and Heat Conduction	203
6.12	Similarity Parameters of Fluid Flow	205
	Summary	207
	Problems	209

Selected References

213

181

140

inaex	1	ndex
-------	---	------

215