Contents

List of Contributors	ix
Preface	xi
Contents of Previous Volumes	xiii

Part I. Theory of Mixtures

Ray M. Bowen

INTRODUCTION	
1. KINEMATICS AND FIELD EQUATIONS	2
1.1 Kinematics and Changes of Frame	2
1.2 Balance of Mass	9
1.3 Elements of Stoichiometry	12
1.4 Balance of Momentum	16
1.5 Balance of Energy	21
1.6 Second Axiom of Thermodynamics	28
1.7 Comments on the Formulation of Mixture Theories	35
2. DIFFUSION THEORIES	37
2.1 Introduction	37
2.2 Constitutive Assumptions	43
2.3 Restrictions Imposed by the Second Axiom of Thermodynamics	45
2.4 Mixtures of Elastic Materials	56
2.5 Restrictions Imposed by the Axiom of Material Frame-Indifference	59
2.6 Restrictions Imposed by Material Symmetry	63
2.7 Mixtures of Gases. Linearized Constitutive Equations	67
2.8 Mixtures of Gases. Classical Diffusion Theories	79
2.9 Mixture of a Gas and an Isotropic Solid. Porous Media Model	93
2.10 Wave Propagation with Diffusion	105
2.11 Concluding Remarks	120
References	122

Part II. Relativistic Continuum Physics: Electromagnetic Interactions

\mathbf{M}	Fro	t
--------------	-----	---

Int	Introduction	
1.	Electromagnetic Interactions with Deformable Bodies	131
1.1	Scope of the Section	131
1.2	A Physical Model	135
1.3	Balance Laws	143
1.4	The Second Law of Thermodynamics	147
1.5	Constitutive Equations for Elastic Materials	149
1.6	Classical Forms of Constitutive Equations	156
1.7	Maxwell's Equations in the Material Coordinate System	164
1.8	Variational Principles for Electromagnetic Elastic Solids	167
2.	VISCOELASTIC DISPERSIVE DIELECTRICS	172
2.1	Scope of the Section	172
2.2	Basic Assumptions for a Deformable Dielectric	174
2.3	Constitutive Equations	176
2.4	Constitutive Equations of Photoviscoelasticity	181
2.5	Frame Indifference and Material Symmetry	183
2.6	Propagation of Light in a Rotating Simple Fluid	188
2.7	Birefringence of a Simple Shear Flow	193
2.8	Deformations Slow Compared to Electromagnetic Variations	196
3.	Electromagnetic Interactions with Deformable Bodies: Relativistic Case	198
3.1	Scope of the Section	198
3.2	Relativistic Kinematics	199
3.3	Relativistically Invariant Balance Laws	200
3.4	Relativistic Form of the Second Law of Thermodynamics	202
3.5	Relativistic Form of the Constitutive Theory	206
3.6	Nonrelativistic Form of the Theory	210
3.7	Approximate Theories	213
Ref	FERENCES	218

Part III. Relativistic Continuum Physics: Micromagnetism

Gérard A. Maugin

Introduction	222
List of Symbols	225
 PHYSICAL BACKGROUND Experimental Observations The Interactions and Their Continuous Representation The Magnetic Spin 	228 228 232 237
 RELATIVISTIC INVARIANT THEORY Introduction Variational Principle 	241 241 242

CONTENTS	vii
CONTRACTO	, 11

2.3	Remarks	254
2.4	Summary of Equations	258
2.5	Reduced Forms of the Constitutive Equations	260
2.6	Other Relativistic Approaches	261
2.7	Conclusion	261
3.	CLASSICAL THEORY OF MICROMAGNETISM	262
3.1	Introduction	262
3.2	Global Balance Laws	263
3.3	Local Field Equations	265
3.4	Nonlinear Elastic Solids	267
3.5	A Variational Principle	269
3.6	Analogy with Oriented and Micropolar Media Theories	276
3.7	Temperature Fluctuations	281
3.8	The Classical Theory as Limit of the Relativistic Theory	283
3.9	The Einstein-de Haas Effect for a Body as a Whole	284
4.	DIFFERENT CLASSES OF ELASTIC MATERIALS	285
4.1	Introduction	285
4.2	The Principle of Objectivity	286
4.3	Anisotropic Magnetically Saturated Media	289
4.4	Material Symmetry	291
4.5	Nonlinear Hemitropic Magnetoelastic Solids	293
4.6	Approximations, Infinitesimal Deformations	297
5.	Conclusion	304
Ар	pendix: The Ponderomotive Force and Couple in a Magnetized Medium	305
Rei	PERENCES	308

INDEX

313