Contents

LIST OF CONTRIBUTORS	xi
Preface	xiii
CONTENTS OF VOLUME I	XV

Part I. Basic Principles

1. Deformation and Motion

A. Cemal Eringen

1.1	Scope of the Chapter	3
1.2	Coordinates	4
1.3	The Motion, Deformation, Strain Measures	11
1.4	Length and Angle Changes	19
1.5	Strain Ellipsoids of Cauchy	24
1.6	Strain Invariants, Principal Directions	28
1.7	Rotation	35
1.8	Area and Volume Changes	40
1.9	Compatibility Conditions	42
1.10	Kinematics, Time Rates of Tensors	45
1.11	Deformation Rate, Spin, Vorticity	50
1.12	Rates of Strains and Rotations	53
1.13	Material and Spatial Manifolds	56
1.14	Kinematics of Line, Surface, and Volume Integrals	59

2. BALANCE LAWS

A. Cemal Eringen

Scope of the Chapter	69
Global Balance Laws	70
Master Law for Local Balance	74
Local Balance Laws	77
Stress Quadratic, Stress Invariants	85
Stress Flux	87
	Scope of the Chapter Global Balance Laws Master Law for Local Balance Local Balance Laws Stress Quadratic, Stress Invariants Stress Flux

vi CONTENTS

3. THERMODYNAMICS OF CONTINUA

A. Cemal Eringen

3.1	Scope of the Chapter	89
3.2	Thermodynamic Processes	90
3.3	The First and the Second Laws of Thermodynamics	93
3.4	Thermodynamic Restrictions on Some Simple Materials	97
3.5	Discontinuous Thermodynamic Processes	105
3.6	Thermodynamics of Materials with Memory	110
3.7	Onsager Forces and Fluxes	115
3.8	Onsager Force Potential, Variational Principle	124
References		127

Part II. Constitutive Equations for Simple Materials

1. GENERAL THEORY

A.	Cemal Eringen	
1.1	Scope of the Chapter	131
1.2	Raison d'Etre	132
1.3	Axioms of Constitutive Theory	134
1.4	Thermomechanical Materials	146
1.5	Thermoelastic Materials	153
1.6	Thermoviscous Fluids	155
1.7	Simple Thermomechanical Materials	159
Ref	erences	172

2. THERMOELASTIC SOLIDS

Erdoğan S. Suhubi

2.1	Scope of the Chapter	174
2.2	Résumé of the Fundamental Equations	175
2.3	Constitutive Relations for Thermoelastic Solids	177
2.4	Isotropic Thermoelastic Solids	183
2.5	Linear Constitutive Relations	186
2.6	Linear Theory for Isotropic Thermoelastic Solids	190
2.7	Temperature-Rate-Dependent Thermoelastic Solids	191
2.8	Constitutive Relations for Elastic Materials. Hyperelasticity	199
2.9	Various Forms of Constitutive Relations	203
2.10	Anisotropic Elastic Solids	205
2.11	Restrictions on the Strain Energy Function for Isotropic Materials	220
2.12	Work Relations for Elastic Equilibrium	223
2.13	Formulation of Boundary-Value Problems. Elasticities	225
2.14	Formulation of Boundary-Value Problems in Isotropic Materials	230
2.15	Approximate Theories for Hyperelastic Solids	235

CONTENTS	V1	1
001111110		

2.16 Variational Theorems of Elastostatics	243
2.17 Small Motions Superimposed on Large Static Deformations	246
2.18 Stability of Elastic Equilibrium	258
References	262

3. THERMOVISCOUS FLUIDS

Tien Sun Chang

3.1	Scope of the Chapter	267
3.2	Equations of Balance	268
3.3	Entropy Inequality	270
3.4	Definition and Constitutive Relations of a Temperature-Rate-Independent	
	Thermoviscous Fluid	272
3.5	Limitations Placed on the Constitutive Functions by the Entropy Inequality	275
3.6	Connection with the Classical Theory of Linear Thermoviscous Fluids	278
Refe	rences	281

4. SIMPLE MATERIALS WITH FADING MEMORY

Ellis Harold Dill

4.1	Scope of the Chapter	284
4.2	Linear Viscoelasticity	286
4.3	Mathematical Prerequisites	295
4.4	Nonlinear Constitutive Relations	301
4.5	Material Symmetries	311
4.6	Fading Memory Space	323
4.7	Finite Linear Viscoelasticity	328
4.8	Materials of Integral Type	336
4.9	Thermodynamics of Kelvin-Voigt Materials	345
4.10	Thermodynamics of Materials with Fading Memory	351
4.11	Thermodynamical Restrictions on the Mechanical Constitutive Relations	357
4.12	Small Deformations	372
4.13	Material Testing	376
4.14	Fluids	387
Refe	rences	397

Part III. Methods of Solution

1 EXACT SOLUTIONS IN FLUIDS AND SOLIDS

Charles B. Kafadar

1.1	Scope of the Chapter	408
1.2	Historical Précis	408
1.3	Erickson's Theorems in Finite Elasticity for Static Deformations	409
1.4	Viscometric Flows	413

viii CONTENTS

1.5	Universal Motions for Isotropic, Homogeneous, Incompressible, Simple	
	Materials	414
1.6	Sundry Mathematical Representation Theorems	416
1.7	Simple Fluids	418
1.8	Simple Shearing in a Reiner-Rivlin Fluid	419
1.9	Simple Shearing in a Simple Fluid	421
1.10	Radial Flow in a Simple Fluid	423
1.11	On the Thermodynamic Impossibility of a Steady Poiseulle Flow in a	
	General Simple Fluid	426
1.12	Simple Isotropic Solids	430
1.13	Dynamic Simple Shearing in an Elastic Body	431
1.14	Motions in Simple Solids; Response Functionals Determined by	
	Homogeneous Motions	434
1.15	Radial Oscillations in a Simple Solid Hollow Sphere	444
1.16	Static Deformations	446
Refe	erences	447

2. SINGULAR SURFACES AND WAVES

Matthew F. McCarthy

2.1	Scope of the Chapter	450
2.2	Compatibility Conditions on a Moving Singular Surface	453
2.3	Classification of Singular Surfaces	458
2.4	Basic Laws of Continuum Mechanics	459
2.5	Propagation of Acceleration Waves in Definite Conductors	461
2.6	The Variation of the Amplitudes of Acceleration Waves in Definite	
	Conductors	465
2.7	Propagation of Acceleration Waves in Nonconductors	469
2.8	Acceleration Waves in Isotropic Materials	471
2.9	The Influence of Hydrostatic Pressure on the Propagation of Acceleration	
	Waves	474
2.10	Second-Order Effects in Wave Propagation	477
2.11	Relations of Acceleration Waves to Plane Waves of Infinitesimal Amplitude	479
2.12	Waves in Incompressible Materials	482
2.13	Simple Waves	484
2.14	Undirectional Simple Waves in Isotropic Media	489
2.15	Shock Waves in Elastic Nonconductors	494
2.16	Shock Waves in Infinitesimal Amplitude	498
2.17	Shock Waves in Isotropic Media	500
2.18	Solution of Initial Boundary Value Problems	503
References		513

3. COMPLEX FUNCTION TECHNIQUE

Fazil Erdogan

3.1	Scope of the Chapter	524
3.2	Definitions: Dual Series, Dual Integral Equations, Potential, Flux	525
3.3	Methods of Solution of Mixed Boundary Value Problems	530

CONTENTS ix

3.4	Direct Application of Complex Potentials	531
3.5	Nature of the Kernel in Mixed Boundary Value Problems	536
3.6	Reduction of Dual Series Equations to Singular Integral Equations	540
3.7	Reduction of Dual Integral Equations to Singular Integral Equations	546
3.8	Dual Integral Equations Leading to Singular Integral Equations of the	
	Second Kind	551
3.9	A System of Dual Series-Integral Equations	561
3.10	Singular Integral Equations with a Generalized Cauchy Kernel	568
3.11	Numerical Solution of the Singular Integral Equations of the First Kind	572
3.12	2 Solution of Singular Integral Equations of the Second Kind	585
3.13	Solutions by Gauss-Chebyshev and Gauss-Jacoby Integration Formulas	591
Ref	erences	601
Au	THOR INDEX	605
Sub	JECT INDEX	610