CONTENTS

-	Preface	<i>page</i> xiii
	1 INTRODUCTION	
1	Introduction	1
_	Mechanisms of instability	4
3	Fundamental concepts of hydrodynamic stability	8
4	Kelvin-Helmholtz instability	14
5	Break-up of a liquid jet in air	22
_	blems for chapter 1	27
	2 THERMAL INSTABILITY	
6	Introduction	32
7	The equations of motion	34
	The exact equations, 34; The Boussinesq equations, 35	
8	The stability problem	37
-	The linearized equations, 37; The boundary condi-	
	tions, 40; Normal modes, 42	
9	General stability characteristics	44
	Exchange of stabilities, 44; A variational principle,	
	45	
10	Particular stability characteristics	50
	Free-free boundaries, 50; Rigid-rigid boundaries,	
	51; free-rigid boundaries, 52	
11	- · · · · · · · · · · · · · · · · · · ·	52
12	Experimental results	59
13	Some applications	62
	whilems for chanter 2	63

3 CENTRIFUGAL INSTABILITY

14	Introduction	69
15	Instability of an inviscid fluid	71
	Three-dimensional disturbances, 73; Axisymmetric	
	disturbances, 77; Two-dimensional disturbances, 80	
16	Instability of Couette flow of an inviscid fluid	82
17	The Taylor problem	88
	Axisymmetric disturbances, 90; Two-dimensional	
	disturbances, 103; Three-dimensional disturbances,	
	104; Some experimental results, 104	
18	The Dean problem	108
	The Dean problem, 108; The Taylor-Dean problem, 113	
19	•	116
	blems for chapter 3	121
		121
	4 PARALLEL SHEAR FLOWS	
20	Introduction	124
	The inviscid theory	
21	The governing equations	126
22	General criteria for instability	131
23	Flows with piecewise-linear velocity profiles	144
	Unbounded vortex sheet, 145; Unbounded shear	
	layer, 146; Bounded shear layer, 147	
24	The initial-value problem	147
•	The viceous throws	
	The viscous theory	
25	The governing equations	153
26	The eigenvalue spectrum for small Reynolds numbers	158
	A perturbation expansion, 159; Sufficient conditions	
	for stability, 161	
27	Heuristic methods of approximation	164
	The reduced equation and the inviscid approxima-	
	tions, 165; The boundary-layer approximation near	
	a rigid wall, 167; The WKBJ approximations,	
	167; The local turning-point approximations,	

	171; The truncated equation and Tollmien's improved viscous approximations, 175; The viscous	
	correction to the singular inviscid solution, 177	4.5.5
28	Approximations to the eigenvalue relation Symmetrical flows in a channel, 181; Flows of the boundary-layer type, 183; The boundary-layer approximation to $\phi_3(z)$, 184; The WKBJ approximation to $\phi_3(z)$, 185; The local turning-point approximation to $\phi_3(z)$, 188; Tollmien's improved approximation to $\phi_3(z)$, 191	180 196
29	The long-wave approximation for unbounded flows	202
30	Numerical methods of solution Expansions in orthogonal functions, 203; Finite-difference methods, 206; Initial-value methods (shooting), 207	202
31	Stability characteristics of various basic flows Plane Couette flow, 212; Poiseuille flow in a circular pipe, 216; Plane Poiseuille flow, 221; Combined plane Couette and plane Poiseuille flow, 223; The Blasius boundary-layer profile, 224; The asymptotic suction boundary-layer profile, 227; Boundary layers at separation, 229; The Falkner-Skan profiles, 231; The Bickley jet, 233; The hyper- bolic-tangent shear layer, 237	211
32	Experimental results	239
Pro	blems for chapter 4	245
	5 UNIFORM ASYMPTOTIC APPROXIMATIONS	
33	Introduction	251
	Plane Couette flow	
34 35	The integral representations of the solutions The differential equation method	256 263
	General velocity profiles	
36	A preliminary transformation	265

37	The inner and outer expansions	267
	The inner expansions, 268; The outer expansions,	
	271; The central matching problem, 276; Composite approximations, 278	
38	Uniform approximations	280
	The solution of well-balanced type, 280; The solu-	
	tions of balanced type, 280; The solutions of dominant-recessive type, 283	
39	A comparison with Lin's theory	285
40	Preliminary simplification of the eigenvalue relation	290
41	The uniform approximation to the eigenvalue relation	295
	A computational form of the first approximation to the	
	eigenvalue relation, 299; Results for plane Poiseuille	
	flow, 301	
42	A comparision with the heuristic approximations to the	305
	eigenvalue relation	
	The local turning-point approximation to $\phi_3(z)$, 305;	
	Tollmien's improved approximation to $\phi_3(z)$, 306;	
	The uniform approximation to $\phi_3(z)$ based on the	
	truncated equation, 308; The uniform approxima-	
	tion to $\phi_3(z)$ based on the Orr-Sommerfeld equation,	
	309	
43	A numerical treatment of the Orr-Sommerfeld problem	311
	using compound matrices	
	Symmetrical flows in a channel, 315; Boundary-	
	layer flows, 316	
Pro	blems for chapter 5	317
	6 ADDITIONAL TOPICS IN LINEAR	
	STABILITY THEORY	
44	Instability of parallel flow of a stratified fluid	320
	Introduction, 320; Internal gravity waves and Ray-	
	leigh-Taylor instability, 324; Kelvin-Helmholtz	
	instability, 325	
45	Baroclinic instability	333
46	Instability of the pinch	339
47	Development of linear instability in time and space	345
	Initial-value problems, 345; Spatially growing modes, 349	

48		333
	Introduction, 353; Instability of periodic flows, 354;	
	Instability of other unsteady basic flows, 361	
Pro	blems for chapter 6	363
	7 NONLINEAR STABILITY	
49	Introduction	370
	Landau's theory, 370; Discussion, 376	
50	The derivation of ordinary differential systems governing	380
	stability	
51	Resonant wave interactions	387
	Internal resonance of a double pendulum, 387;	
	Resonant wave interactions, 392	
52	Fundamental concepts of nonlinear stability	398
	Introduction to ordinary differential equations, 398;	
	Introduction to bifurcation theory, 402; Structural	
	stability, 407; Spatial development of nonlinear	
	stability, 416; Critical layers in parallel flow, 420	
53	Additional fundamental concepts of nonlinear stability	423
	The energy method, 424; Maximum and minimum	
	energy in vortex motion, 432; Application of boun-	
	dary-layer theory to cellular instability, 434	
54	Some applications of the nonlinear theory	435
	Bénard convection, 435; Couette flow, 442;	
	Parallel shear flows, 450	
Pro	blems for chapter 7	458
	APPENDIX. A CLASS OF	
	GENERALIZED AIRY FUNCTIONS	
A1	The Airy functions $A_k(z)$	465
A2	The functions $A_k(z, p)$, $B_0(z, p)$ and $B_k(z, p)$	466
A3	The functions $A_k(z, p, q)$ and $B_k(z, p, q)$	472
A4	The zeros of $A_1(z, p)$	477
	Bibliography and author index	479
	Motion picture index	515
	Subject index	517