Contents

Preface v CHAPTER 1 ONE-DIMENSIONAL FLOW 1.1 Introduction 1 1.2 Eulerian Method 3 1.2.1 Flow along a Stream Tube 3 1.2.2 Buoyancy Effect 6 1.3 The Pressure Equation 7 1.3.1 Pitot Tubes 7 1.3.2 Venturi Tube 9 1.3.3 Manometer Readings 10 1.3.4 Assessment of 'Incompressible' Assumption 11 1.4 Euler's Momentum Theorem for Steady Motion 12 1.4.1 Force on a Stream Tube 12 1.4.2 Sudden Enlargement of a Pipe 14 Problems 15

CHAPTER 2 GENERAL EQUATIONS OF MOTION

2.1	Introduction		18
	2.1.1	Acceleration Vector	18
	2.1.2	Moving Axes	19
2.2	The Equations of Motion of an Inviscid Fluid		21
	2.2.1	Rate of Change of Fluid Characteristics	21
	2.2.2	Continuity of Mass Flow	23
	2.2.3	Euler's Equation of Motion	24
2.3	Irrotational Motion		25
	2.3.1	Bernoulli's Equation	25
		Persistence of Irrotational Motion	27
	2.3.3	Irrotational Motion—Pictorial Description	29
		Motion of a Fluid Element	29
		ix	

x	CONTENTS	
2.4	Boundary Conditions	32
2.5	Uniqueness	32
	2.5.1 Kinetic Energy	32
	2.5.2 Uniqueness Theorem	33
2.6	Euler's Momentum Theorem	34
	2.6.1 Force Exerted on Fixed Bodies	34
	2.6.2 Theorem of Moment of Momentum	37
	Problems	39
	CHAPTER 3 TWO-DIMENSIONAL MOTION	
3.1	Introduction	42
3.2	Two-Dimensional Functions	43
	3.2.1 Stream Function	43
	3.2.2 Velocity Potential	44
	3.2.3 Complex Potential	45
	3.2.4 Indirect Approach	46
	3.2.5 Inverse Function	46
3.3	Basic Singularities	4 7
	3.3.1 Source	47
	3.3.2 Doublet, Double Source or Dipole	48
	3.3.3 Vortex	49
	3.3.4 Mixed Flow	50
3.4	Rankine Technique	52
	3.4.1 Source + Sink	53
	3.4.2 Source + Sink + Uniform Stream	54
	3.4.3 Stagnation Streamline	54
3.5	0	55
	3.5.1 Circle Theorem	56
	3.5.2 Flow Past Circular Cylinder with Circulation	57
	3.5.3 Image of a Doublet in a Circular Cylinder	59
3.6	Conformal Transformation	60
	3.6.1 Transformation of Flow Field	62
	3.6.2 Transformation of Source	63
	3.6.3 Transformation of Doublet	64
3.7	The Aerofoil	65
	3.7.1 The Joukowski Transformation	65
	3.7.2 Thin Aerofoils	66
	3.7.3 Joukowski's Hypothesis	67
	3.7.4 Blasius's Theorem	69

	CONTENTS	xi
	3.7.5 Lift Force	70
3.8	Potential Field Mapping	72
	3.8.1 Schwartz-Christoffel Theorem	73
	3.8.2 Semi-Infinite Strip	74
	3.8.3 Infinite Strip	75
3.9		76
	3.9.1 Zhukovski Function 3.9.2 Kirchhoff Function	76
0.10		79
3.10	· 8 · ·	83
	3.10.1 Boundary Conditions 3.10.2 Representation of Circulation	84 85
	Problems	
	rioblems	86
	CHAPTER 4 IRROTATIONAL MOTION IN THREE	
	DIMENSIONS	
4.1	Introduction	91
4.2	Laplace's Equation	91
	4.2.1 Spherical Harmonics	91
	4.2.2 Axially Symmetric Field	92
	4.2.3 Stokes's Stream Function	93
	4.2.4 Motion of a Sphere 4.2.5 Pressure Distribution	95 95
	4.2.6 Drag Force	95 97
4.3	_	99
	4.3.1 Continuous Distributions	99
	4.3.2 Flow near Axis due to Sources	101
	4.3.3 Flow near Axis due to Doublets	102
4.4		103
	4.4.1 Slender Body of Revolution in Uniform Stream	104
	4.4.2 Nose-up Pitching Moment	106
4.5	Motion Regarded as due to Sources and Doublets	108
	4.5.1 Green's Theorem and its Interpretation	108
	4.5.2 Surfaces of Discontinuity	110
4.6	Alternative Representation	111
	4.6.1 Vortex Sheets4.6.2 Vortex Density	111
	4.6.3 Induced Velocity	114 116
	4.6.4 Induced Drag	117
	Problems	119
	•	/

CONTENTS

CHAPTER 5 DYNAMICS OF REAL FLUIDS

5.1	Introduction		
	5.1.1	Viscosity and Reynolds Number	123
	5.1.2	Influence of Reynolds Number upon Flow Con-	
		figuration	125
	5.1.3	Real and Ideal Fluids	127
	5.1.4	Drag in a Real Fluid	131
		Secondary Flow	134
5.2	The I	Equations of Motion for Viscous Flow	135
	5.2.1	The Stress Tensor in a Viscous Fluid	135
	5.2.2	The Navier-Stokes Equations	138
	5.2.3	Vorticity and Circulation in a Viscous Fluid	149
5.3	Some	Exact Solutions of the Navier-Stokes Equations	151
	5.3.1	Steady Flow through an Arbitrary Cylinder under	
		Pressure	152
	5.3.2	Steady Couette Flow between Cylinders in Relative	
		Motion	156
	5.3.3	Steady Flow between Parallel Planes	157
		Flow due to a Rotating Disc	160
		Some Solutions for Unsteady Flows	165
5.4	Very Slow Motion		167
		Stokes's Flow	167
	5.4.2	Oseen Flow	171
	Problems		172
	Сна	PTER 6 THE LAMINAR BOUNDARY LAVER IN	

CHAPTER 6 THE LAMINAR BOUNDARY LAYER IN INCOMPRESSIBLE FLOW

6.1	Introduction	
	6.1.1 The Concept of the Boundary Layer	175
	6.1.2 Boundary-Layer Separation	179
6.2	The Boundary Layer Equations	
	6.2.1 Two-dimensional Flow along a Plane Wall	181
	6.2.2 Flow along a Curved Surface	183
	6.2.3 Some Important Boundary-Layer Characteristics	184
	6.2.4 Integral Equations of the Boundary Layer	187
	6.2.5 Von Mises Transformation	190
6.3	Analytic Solutions of the Boundary Layer Equations	
	6.3.1 Flow Parallel to a Semi-infinite Flat Plate	192
	6.3.2 Flow near to the Stagnation Point of a Cylinder	196

xii

		CONTENTS	xiii
	6.3.3	The Falkner–Skan Solutions	198
	6.3.4	Solution for a Linearly Decreasing External Velocity	199
	6.3.5	Solution for a Flow with Stagnation Point and Separation	203
6.4	Practi	cal Methods of Solving the Boundary-Layer	
		Equations	207
	6.4.1	Pohlhausen's Method	207
	6.4.2	Thwaites's Method	211
	6.4.3	Stratford's Method	217
6.5	Some Miscellaneous Boundary-Layer Problems		223
	6.5.1	Flow in Laminar Wakes and Jets	223
	6.5.2	Boundary Layers with Suction	226
	6.5.3	Flow in a Converging Channel	228
	Proble	ems	229

CHAPTER 7 TURBULENT FLOW

7.1	Introduction		
	7.1.1	The Mechanism of Transition to Turbulence	233
	7.1.2	The Essential Characteristics of Turbulence	235
	7.1.3	Reynolds Equations for Turbulent Motion	236
		Turbulent Flow between Parallel Planes	238
7.2	Mixin	g-Length Theories of Turbulence	240
	7.2.1	Prandtl's Momentum-Transfer Theory	240
	7.2.2	The Mean Velocity in a Two-Dimensional	
		Turbulent Jet	24 1
	7.2.3	The Limitations of Mixing-Length Theories	244
7.3	Turbu	llent Boundary Layers	244
		The Two-Dimensional Turbulent Boundary Layer	244
	7.3.2	Flow in the Absence of Pressure Gradient	249
	7.3.3	General Calculations of Boundary-Layer Develop-	
		ment	251
	7.3.4	Flow near to Separation: Stratford's Analysis	256
7.4	Correlation Theory of Homogeneous Turbulence		261
	7.4.1	Theoretical Deductions from the Navier-Stokes	
		Equations	262
	7.4.2	Isotropic Turbulence	265
	7.4.3		267

CONTENTS

	7.4.4	The Momentum Equation in Isotropic Turbulence	269
	7.4.5		
		Equation	271
7.5	Spect	al Theory of Homogeneous Turbulence	273
	7.5.1	The Energy Spectrum Tensor	273
	7.5.2	Spectra in Isotropic Turbulence	274
	7.5.3	The Relationship between $E(K)$ and $f(r)$	275
	7.5.4	Rate of Change of the Energy Spectrum	278
	7.5.5	The Probability Distribution of $u(\mathbf{x})$	279
	7.5.6	Calculation of the Pressure Covariance in Isotropic	
		Turbulence	280
	Problems References		282
			285
	Index		

xiv