CONTENTS

CHAPTER I PRELIMINARY PHYSICO-MATHEMATICAL INTRODUCTION

		-	Page
1. CURRENT FORMULAE OF VECTOR ANALYSIS	•	•••	1
1.1. Scalars and vectors. Definitions			. 1
1.2. Vector operations	•		2
1.3. Point functions: gradient, divergence, curl	• • •		. 2
1.3.1. Gradient			2
1.3.2. Divergence			2
1.3.3. Curl			24
1.4. Symbolic representation by Nabla operator			2
1.5. Gauss' theorem			2
1.6. Transformation of coordinate systems			2
1.6.1. Gradient			3
1.6.2. Divergence			3
1.6.3. Curl	•		3
	•	•••	5
2. BASIC THERMODYNAMICS OF GASES			. 3
2.1. Preliminary considerations			. 34
2.2. Physical properties of fluids			31
2.3 Units	•		31
24 The equation of state	• •	•	3
25. The first law of thermodynamics	•	• •	- 4
2.5. The first law of infinited managers	•	•••	4
2.5.1. External methamical work	•	•••	• 41
6 Specific host	•	•••	1 1
2.0. Specific neat \ldots \ldots \ldots \ldots \ldots \ldots	•	• •	4
2.7. Other functions of state: enthalpy and entropy	•	• •	4
2.7.1. Entraipy	•	•••	44
2.7.2. Entropy	•	• •	4
2.8. Effect of loss of energy. Heat of dissipation	•	• •	4
2.9. Change of state of gases	•	• •	4
2.9.1. The polytropic equation of state	•	•	48
2.9.2. Graphical representation	•	•	50
2.9.3. The equation of state applied to the dynamics of gases	•		51
2.9.4. Reversible and irreversible processes	•		5;
.10. The mechanism of a reversible process. The Carnot cycle	•		52
.11. Considerations on the second law of thermodynamics			53
.12. Heat transfer	•		54
2.12.1. Convection	•		54
2.12.2. Conduction			55
2.12.3. Radiation			56
.13. Viscosity. Turbulence			56
			50

CHAPTER II

FUNDAMENTAL RELATIONS CONCERNING THE MOTION OF COMPRESSIBLE FLUIDS

	Page
3. FUNDAMENTAL EQUATIONS OF THE FLOW OF COMPRESSIBL	E
PERFECT FLUIDS	. 59
3.1. The equations of motion	. 59
3.1.1. Alternative forms of the equations of motion	. 61
3.1.2. Stream lines. Vortex lines	. 62
3.1.3. The equations of motion along a stream line: intrinsic equations	. 63
3.2. The equation of continuity	. 63
3.2.1. The equation of continuity in cylindrical coordinates	. 64
3.2.2. The equation of continuity in polar coordinates	. 66
3.2.3. The equation of continuity for flow along a narrow stream ube	. 68
3.3. The energy equation (or pressure equation)	. 69
3.3.1. Remarks on the pressure equation	. 71
3.3.2. Alternative forms of the Bernoulli equation	. 73
3.4. Circulation theorems	. 74
3.5. The momentum theorem	. 70
3.6. The moment of momentum	. 78
4. PROPAGATION OF MOTION IN COMPRESSIBLE FLUIDS	. 79
4.1. Preliminary considerations	. 79
4.2. Propagation of plane disturbances of low intensity	. 80
4.3. Propagation of spherical disturbances of low intensity	. 83
4.4. Cylindrical waves of low intensity	. 84
4.5. Propagation of plane waves of high intensity	. 85
4.6. The distinctive character of subsonic, transonic and supersonic flows	. 89
5 CHARACTERISTIC FORMS OF EQUATIONS FOR THE FLOW C	Ŧ
COMPRESSIBLE FLUIDS IN TERMS OF THE SPEED OF SOUN	n
COMPACTOR AND A COMPACT AND A	
AND MACH NUMBER	. 91
5.1. Various forms of the pressure equation or energy equation	. 91
5.1.1. Critical speed. Pressure, density and temperature	. 91
5.1.2. Variation of the characteristics in terms of the Mach number	. 92
5.1.3. Pressure variation in the case of small disturbances	. 95
5.2. The velocity potential differential equation for steady flow	. 96
5.2.1. The potential equation in cartesian coordinates	. 97
5.2.2. The potential equation in cylindrical coordinates	. 99
5.2.3. The potential equation in polar coordinates	. 100

CHAPTER III

STEADY ONE-DIMENSIONAL FLOW

6. 1	STEA	DY FLOW THROUGH PIPES AND NOZZLES	102
6.1	. The	quation for gas flow through tubes	102
6.2	. Flow	through a Laval nozzle	105
	6.2.1.	Variation of velocity as a function of the cross-section	109
	6.2.2.	Methods for determining the flow conditions when the mass flow is less	100
		than the maximum	109
6.3	. Flow	through a tube of constant cross-sectional area with heat transfer	111

Contents

	Page
7. PLANE SHOCK WAVES THEORY	113
7.1. Simple normal wave	114
7.2 Normal shock wave	114
7.2.1. Variation of entropy	117
7.2.2. Loss of head through a shock wave	119
7.3. Oblique shock waves	120
7.3.1 Flow conditions behind a shock wave	124
7.3.2 Conditions leading to the formation of plane shock waves Frontal shock	··
wates	125
733 Reflected waves	128
74 Loss of head Wayes drag	129
7.5 Graphical representation of the shock wave equations	132
76 Deflection as a function of pressure	135
1.0. Deficition as a function of pressure	155
8. VARIOUS APPLICATIONS OF ONE-DIMENSIONAL FLOW	137
8.1. Conditions of equilibrium in flow through nozzles	137
8.2. Considerations on the distribution of velocities in the sections of a wind tunnel .	140
8.3. Flow conditions in the circuit of a subsonic wind tunnel	141
8.3.1. Loss of head	146
8.3.2. The coefficient of utilisation of a wind tunnel	149
8.3.3. Flow conditions along the circuit	150
8.4 Flow conditions in supersonic wind tunnels	155
85 Considerations on intermittent supersonic wind tunnels	157
8.6 Measurement of pressure and temperature	159
8.6.1 Measurement of pressure at stangetion points	160
8.6.2 Massurement of pressure at stagnation points	161
863 Determination of the direction of the velocity	163
8.6.4 Manufacture of the attention temperature	163
o.o.t. measurement of the stagnation temperature	103

CHAPTER IV

GENERAL SUBSONIC FLOW. CONSIDERATIONS ON THE TRANSONIC REGIME

9. THE THEORY OF SMALL DISTURBANCES IN SUBSONIC FLOW (LINEAR THEORY)	165
 9.1. Two-dimensional flow along a wave-shaped wall (direct method) 9.2. Flow around thin profiles (wing of infinite span) 9.2.1. The case of the invariant profile 9.2.2. The case of equal potentials (φ = φ_i) 9.2.3. Determination of the Prandtl-Glauert formula by direct approach 9.3. Critical Mach number in the hypothesis of small disturbances 9.3.1. Direct and accurate determination of the critical Mach number 9.4. Pressure distribution on thin airfoils 9.4.1. Pressure distribution on an aerodynamic profile of any shape 9.4.2. Design of profiles with a given pressure distribution. Laminar profiles 9.5. Flow around a slender body of revolution 9.5. Slender bodies with axis parallel to the general direction of the flow 	166 169 171 172 174 175 177 177 177 181 181
 9.5.2. Lateral motion of a body of revolution	184 185
SPAN IN THE HYPOTHESIS OF SMALL DISTURBANCES	186
10.1. Preliminary theoretical considerations on vortices in subsonic flow	186 187 189 193

	· · ·	Page
	10.2. The equation of circulation around a wing of finite span	194
	10.3. Distribution of circulation around elliptic, rectangular and trapezoidal wings .	198
	10.4. Aerodynamic forces and moments	203
	10.4.1. Lift	203
	10.4.2. Induced drag	205
	10.4.3. Aerodynamic moments	206
	10.5. Deflection of flow downstream	207
	10.6 Yawed and swent wings	209
	10.6.1 Preliminary remarks	209
	10.6.2 Action of free vortices on swent and vawed wings	210
	10.6.3 Application to event-back wings	210
	10.6.4 Application to source wings	213
	10.0.4. Application to yawed wings	210
	11. SUBSONIC TWO-DIMENSIONAL FLOW IN THE CASE OF GREAT	
	VARIATIONS IN VELOCITY	219
	11.1. The Chaplygin equations (Hodograph method)	220
	11.1.1. Symmetrisation of the Chaplygin equations	223
	11.1.2. Simplification of the equations by application of a quasi-isentropic trans-	
	formation law	224
	11.2. The Kármán-Tsien method for the computation of pressures	228
	11.2.1. Critical Mach number	. 232
	11.3. Correspondence between the compressible physical plane and the incompressible	
	auxiliary plane in flow without circulation	233
	11.3.1. Fundamental formulae of correspondence	23 3
	11.3.2. Application to an elliptic contour	236
	11.3.3. Flow without circulation around a circle	239
	11.3.4. Alternative method of determination of flow around a circle	242
	12. DETERMINATION OF THE CORRESPONDENCE FORMULAE FOR FLOW WITH CIRCULATION	244
	12.1. Basic correspondence formulae for flow with circulation	244
	12.1.1. Correspondence on a circle	247
	12.2. Construction of profiles in a physical plane corresponding to a given reference	
	profile in the auxiliary plane	249
	12.2.1. Applications to biconvex-symmetrical Joukowski airfoils	251
	12.3. Construction of a reference profile corresponding to a given profile in the physical	
	compressible plane	255
•	12.3.1. Application to biconvex-symmetrical airfoils	25 8
	13. THE SPHERE OF APPLICATION OF THE SUBSONIC THEORIES.	
	THE TRANSONIC REGIME	262
	12.1 Depliminante esperire	262
	13.2. Overlighting remarks	203
	13.2. Qualitative evaluation of wave drag for values of M_{∞} between M_{c} and 1	209
	13.3. variation of pressure and fift \dots	272
	13.3.1. The influence of the camber of the profile	277
	$13.3.2. \text{ Laminar profiles} \dots \dots$	279
	13.4. Variation of aerodynamic moments	280
	13.4.1. Moment coefficient of symmetrical profiles	280
	13.4.2. Moment coefficient at zero lift	281
	13.5. Considerations on swept-back wings in subsonic high speed airflight	283
	13.6. Conclusions	286
	•	

CHAPTER V

SUPERSONIC FLOW IN THE CASE OF SMALL DISTURBANCES

Pa	ıge
14. THE METHOD OF SMALL DISTURBANCES IN TWO-DIMENSIONAL SUPERSONIC FLOW	287
 14.1. Supersonic flow along a wave-shaped wall 14.2. The thin profile theory (Ackeret's linear theory)	288 290 291 292 296 297 297 298 301 303 303
15. FLOW AROUND A BODY OF REVOLUTION IN THE ASSUMPTION OF SMALL DISTURBANCES	306
 15.1. Considerations on the differential equation of the velocity potential	306 308 310 312 314 315 317 322 323 324 326
16. THE THEORY OF CONICAL FLOW IN THE ASSUMPTION OF SMALL DISTURBANCES	329
 16.1. Simplification of the velocity potential equation for slender conical bodies	330 332 333 335 337 339 341 344 344

CHAPTER VI

RIGOROUS SOLUTIONS IN TWO-DIMENSIONAL SUPERSONIC FLOW

17. EXPANSION OF A TWO-DIMENSIONAL SUPERSONIC STREAM		•		346
17.1. Determination of the principal equations for expansion around a corner				347
17.2. Prandtl-Meyer complete expansion				′349
17.2.1. Calculation of the deflection of the stream				351
17.2.2. The epicycloid curve \ldots	•		•	355
17.2.3. Graphical construction of the normals to the epicycloid				357

	Page
17.3. Limited (partial) expansion	358
17.3.1 Expansion around a corner	358
1732 Expansion along a curved well	260
17.3.2 Application of the expansion formulas to compression waves in the accel	300
of small defloations	261
or small deflections	301
17.4. Application to the exact theory of supersonic profiles	362
17.4.1. Flat plate in supersonic flow	363
17.4.2. Diamond-shaped profile	365
17.4.3. Curved profile	366
17.5. Hydrodynamic analogy of the wave pattern	368
17.6. Flows independent of the deflection of the stream	370
17.6.1. Flow around a vortex	370
17.6.2. Source with constant rate of flow	371
17.6.3 Superposition of source and vortex	372
These superposition of source and voltex	572
18 THE THEORY OF SUBERSONIC PROPHES IN THE SECOND	
18, THE THEORY OF SUPERSONIC PROFILES IN THE SECOND	
APPROXIMATION	373
18.1 Expansion of the property coefficient as a permanent series of the deflection	277
19.1. Expansion of the pressure coefficient as a power series of the deflection	373
13.1.1. Expansion of the pressure coefficient in the case of snock waves	3/4
18.1.2. Expansion of the pressure coefficient in the case of expansion waves .	375
18.1.3. Considerations on the choice of a second approximation formula for the	
\mathbf{c} omputation of pressures $$	377
18.2. General formulae for the calculation of the lift, wave drag and resultant moments	
of supersonic profiles \ldots	379
18.2.1. Profiles with minimum drag at zero lift (C_{ra} minimum)	383
18.2.2. Profiles of maximum fineness	386
18.3 Aerodynamic characteristics of usual supersonic profiles	386
1831 Diamond-shaned profiles	297
19.3.2. Circular are profiles	200
10.2.2. Concurat are profiles	307
18.3.3. Double-trapezoidal profiles	389
18.4. Experimental confirmation	390
14 MILE MEMILON OF OUTD LOWER SERVICE AND TO MUCH SALE MORE	
19. THE METHOD OF CHARACTERISTICS APPLIED TO THE ANALYSIS	
OF TWO-DIMENSIONAL SUPERSONIC FLOW	394
10.1 Preliminary theoretical considerations	206
10.1.1 Linguined constitutions for time dimensional flow	390
10.2 Characteristic line and a contract of two-dimensional flow	397
19.2. Characteristic lines	399
19.2.1. Integration of the characteristics equation in the hodograph plane	404
19.2.2. Practical application of the characteristics diagram	405
19.3. Waves reflected by rigid or free walls	409
19.4. Interference waves	413
19.4.1. Shock wave and expansion wave interference	414
19.4.2. Intersecting interference waves	418
19.4.3. Application of the characteristics diagram to a network of interference	
waves	420
19.5. Influence of reflected and interference waves on the drag at zero lift of a	
supersonic biplane	421
90 ADDI ICATION OF CHADACTEDISTICS TO THE DESIGN OF	
20. AFFERCATION OF CHARACTERISTICS TO THE DESIGN OF	
PLANE EFFUSORS, DIFFUSORS AND JETS	42 5
	407
20.1. Calculation of the two-d mensional supersonic effusor	426
20.2. Graphical construction of the effusor	430
20.2.1. Effusor with a single slope	430
20.2.2. Effusor with successive slopes	431
20.3. Analytical determination of the contour of the effusor	432
20.3.1. Approximate flow in the sonic throat section	434
20.4. Considerations on the supersonic diffusor	437
20.5. Determination of flow conditions in two-dimensional supersonic jets	439

Contents	
----------	--

CHAPTER VII	
EXACT SOLUTIONS IN FLOW AROUND BODIES OF REVOLUTI	ON
P	age
21. FLOW AROUND A CIRCULAR CONE	445
 21.1. General equations of conical flow	446 447 448 449 453 454 457
22. STUDY OF FLOW AROUND BODIES OF REVOLUTION AND INSIDE EFFUSORS OF CIRCULAR CROSS-SECTION.	459
 22.1. General equations of motion 22.2. The method of characteristics in axial-symmetrical flow 22.2.1. Differential equations of the characteristics 22.3. Utilisation of the characteristics in successive operations 22.4. Determination of the flow past a sharp-pointed body of revolution by the method of characteristics 	461 461 462 464 471
 22.5. Application of the method of characteristics to the calculation of circular effusors. 22.5.1. Calculation of a perfect circular effusor	472 473 475 476

CHAPTER VIII

THE THEORY OF WINGS OF FINITE SPAN IN SUPERSONIC FLOW, BASED ON THE METHOD OF SMALL DISTURBANCES

 23.1. The source method applied to the calculation of wings with symmetrical profile and zero angle of attack 23.2. Application to an angular wing with constant slope 23.3. The theory of thin wings based on the doublet method 23.4. Application to an angular plate with subsonic leading edges 23.5. The method of the acceleration potentials 	478 482 485 488 493
24. PRELIMINARY CONSIDERATIONS ON THE THEORY OF INDEFINITE ANGULAR WINGS, BASED UPON THE METHOD OF CONICAL FLOW	494
 24.1. Geometrical characteristics of the conical wing 24.1.1. Definition of the edges of a wing as a function of the Mach cone 24.2. Application of the fundamental formulae of conical flow to conical angular 	495 498
wings 24.2.1. Boundary conditions 24.3. General expression of the function $f=u+iu'$. Hydrodynamical analogy 24.3.1. The symmetrical thick wing	499 502 503 506
24.3.2. Thin angular wing with subsonic leading edges	509 512 514

Contents

	Page
25 CALCULATION OF THE AXIAL DISTURBANCE VELOCITIES AND	
DESCRIPTION ANOLITAD WINGS OF SYMMETRICAL THICKNESS	515
PRESSURES ON ANGULAR WINGS OF SIMMETRICAL INCLUESS	515
25.1. Angular wing with constant slope	515
25.1.1. Subsonic leading edges	517
25.1.2. Wing with one subsonic and one supersonic leading edge	518
25.1.3. Wing with supersonic leading edges	519
25.2 Angular symmetrical wing with multiple facets	520
25.2.1 Application to a symmetrical wing with double slope	522
25.3 Angular wing with continuously variable slope	523
25.4 Calculation of the pressures on swent-back wings of infinite span with symmet-	
rical profile	520
25.4.1 Wing with diamond shaped profile	527
25.4.2 Wing with grapholic profile	520
	52,
×	
26. WAVE DRAG OF DOUBLY-CONICAL DELTA WINGS OF SYMMET-	
RICAL THICKNESS	535
26.1. Definition of the doubly-conical delta wing	536
26.2. Calculation of the wave drag	538
26.3. Application to the calculation of delta wings with diamond-shaped profile	541
26.3.1. Wing with subsonic leading edge and subsonic enclosing surface	544
26.3.2. Wing with subsonic leading edge and supersonic enclosing surface	545
26.3.3. Wing with supersonic leading edge and supersonic enclosing surface	545
26.3.4. Experimental confirmation	540
26.4. Drag of doubly-conical delta wings with linear change in slope	547
26.4.1. Wing with subsonic leading edge and subsonic enclosing edge	552
26.4.2 Subsonic leading edge and supersonic enclosing edge	552
26.4.3 Wing with supersonic leading edge	554
26.4.4. Some considerations on the wave drag of triangular wings with variable	
slope	556
26.5. Wave drag of a doubly-conical delta wing with double slope	550
AS THE THEORY OF THE THIN DIANE TRIANCHIAD WINC	550
27. THE THEORY OF THE THIN PLANE TRIANGOLAR WING	553
27.1. Thin triangular wing with supersonic leading edges	560
27.1.1 Determination of the lift and wave drag	56
27.1.2 Determination of the moments	564
27.2 Thin triangular wing with one supersonic leading edge	56
27.2.1 This triangular wing with the supersone teaching edge	56
27.2.2 Determination of lift and drag	56
27.2.3. Computation of the moments	570
27.3 Triangular wing with subconic leading edges	57
27.3.1 The case when one of the edges of the wing becomes a trailing edge	57
27.3.2 Computation of lift and drag	57
27.3.3 Computation of the momente	575
27.4 Sustion at the subsonic leading edges	57
27.4.1 Application to angular wings with a single subsonic leading edge	58
27.4.2 Suction force on an angular wings with a single subsonic leading edge	58
27.4.2. Suction force on an angular wing with subsonic reading cuges	20.
28. DETERMINATION OF THE AERODYNAMIC CHARACTERISTICS OF	
THIN PLANE WINGS OF USUAL SHAPE	582
28.1. Simple tapered wings	582
28.1.1. Tapered wing with supersonic lateral leading edge	58
28,1.2. Tapered wing with subsonic lateral leading edge	584
28.1.3. Rectangular wings	58
28.1.4. Tapered wing with subsonic lateral trailing edge	58
28.2. Calculation of forces and moments of triangular wings with slanting trailing	
edge	58

28.2.1. Supersonic leading edges		Page	<u>.</u>
28.2.2. Wing with one supersonic and one subsonic leading edge	28.2.1. Supersonic leading edg		39
28.2.3. Wing with supersonic leading edge and subsonic trailing edge 594	28.2.2. Wing with one superso	and one subsonic leading edge 59)2
Dotato, thing with supersonic reading cage and subsonic training cage	28.2.3. Wing with supersonic	ing edge and subsonic trailing edge 59)4
28.2.4. Subsonic leading edges	28.2.4. Subsonic leading edges)4
28.2.5. Subsonic leading edge and subsonic trailing edge	28.2.5. Subsonic leading edge	subsonic trailing edge) 6
28.2.6. Application to a yawed delta wing	28.2.6. Application to a yawed	lta wing	<i>)</i> 6
28.3. Arrow and diamond-shaped wings 599	28.3. Arrow and diamond-shaped w	59	} 9
28.3.1. Supersonic leading and trailing edges	28.3.1. Supersonic leading and	iling edges)0
28.3.2. Subsonic leading edge, supersonic trailing edge	28.3.2. Subsonic leading edge,	ersonic trailing edge)2
$28.3.3. Both edges subsonic \dots \dots$	28.3.3. Both edges subsonic)3
28.4. Double tapered wing $\ldots \ldots \ldots$	28.4. Double tapered wing)4
28.4.1. The case of supersonic edges	28.4.1. The case of supersonic	es)5
28.4.2. Subsonic leading edge and supersonic trailing edge 600	28.4.2. Subsonic leading edge	supersonic trailing edge 60)6

CHAPTER IX

COMPLEX FLOWS AROUND TRIANGULAR WINGS AND THEIR APPLICATION IN DETERMINING AERODYNAMIC CHARACTERISTICS

29.1.	Effect of the deflection of ailerons with supersonic leading edges 29.1.1. Influence of the aileron on lift	608 610 611 612
29.2.	. Variation of the angle of attack for wings with one subsonic and one supersonic	
20.2	leading edge	612
29.3.	Application to an alleron, with subsonic edge	616
	29.3.2 Rolling moment shout the Or aris	617
29.4.	Triangular wing with subsonic edges and variable incidence	618
	29.4.1. Wing with sudden change in incidence	619
۰.	29.4.2. Wing with linear variation of incidence	622
	29.4.3. Delta wing with linear variation of incidence, prolonged by an hori-	022
	zontal plane	624
29.5.	Lift of a thin doubly-conical delta wing	626
	29.5.1. Calculation of the velocity and lift due to the effect of the enclosing surface.	627
	29.5.2. Determination of the total lift	629
30.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES	
30. ' 1	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES	630
30. 1	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING	630
30. 1 30.1.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING	630 632
30. 1 30.1.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING	630 632 632
30. 1 30.1.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges	630 632 632 636 639
30. 1 30.1.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING	630 632 632 636 639 641
30. 1 30.1. 30.2.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges	630 632 632 636 639 641 641
30. 1 30.1.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge	630 632 632 636 639 641 641 642
30. 1 30.1. 30.2.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges	630 632 632 636 639 641 641 642 643
30. 1 30.1. 30.2. 30.3.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero	630 632 632 636 639 641 641 642 643 644
30. 1 30.1. 30.2. 30.3.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero 30.3.1. Thin wing	630 632 632 636 639 641 641 642 643 644 644
30. 1 30.1. 30.2. 30.3.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero 30.3.1. Thin wing 30.3.2. Symmetrical thick wing	630 632 632 636 639 641 641 642 643 644 644 644
30. 30.1. 30.2. 30.3. 30.4.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero 30.3.1. Thin wing 30.3.2. Symmetrical thick wing Application to a rectangular wing fitted with marginal plates	630 632 632 636 639 641 641 642 643 644 644 644 644 644
30. 1 30.1. 30.2. 30.3. 30.4.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.3. Supersonic leading edges Thick symmetrical wing fitted with an axial plate 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero 30.3.1. Thin wing 30.3.2. Symmetrical thick wing Application to a rectangular wing fitted with marginal plates 30.4.1. Computation of the lift 30.4.2. Computation of the lift	630 632 632 636 639 641 641 642 643 644 644 644 644 644 644 646
30. 1 30.1. 30.2. 30.3. 30.4.	THE THEORY OF POLYGONAL WINGS FITTED WITH FLAT PLATES NORMAL TO THE WING Thin angular wing fitted with an axial plate 30.1.1. Subsonic leading edges 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.2. Wing with a subsonic and a supersonic leading edge 30.1.2. Wing with a subsonic and a supersonic leading edge 30.2.1. Subsonic leading edges 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.2. Wing with a subsonic and a supersonic leading edge 30.2.3. Supersonic leading edges The function $f = u + iu'$ in the case of a plate of incidence other than zero 30.3.2. Symmetrical thick wing 30.3.2. Symmetrical thick wing Application to a rectangular wing fitted with marginal plates 30.4.1. Computation of the lift 30.4.2. Computation of the drag 30.4.2. Computation of the drag	630 632 632 636 639 641 642 643 644 645 646 640 651

Contents

	Page
30.5. Cruciform wing with asymmetrical incidence	652
31. CONICAL FLOWS OF HIGHER ORDER AND THEIR APPLICATIO	ON
TO DELTA WINGS	657
31.1. Preliminary remarks	658
31.2. Relations of compatibility	661
31.3. Application to thin triangular wings with subsonic leading edges	662
31.3.1. Determination of the axial velocity u	663
31.3.2. Applications	665
31.3.3. Application to a cambered delta wing	668
31.4. Action of a non-uniform stream on a thin plane triangular wing with subso	nic
edges	670
1.5. Determination of forces and moments	672
31.6. Hydrodynamic method for the determination of axial disturbance velocity	in
the case of delta wings of symmetrical thickness	674
31.6.1. Principle of the method	675
31.6.2. General expression of axial disturbance velocity	679
31.6.3. Determination of constants	. , 680
31.6.4. Examples of applications	681
31.6.5. Application to thin delta wings with supersonic edges	683
31.7. Extension of the hydrodynamic method to thin triangular wings with	one
	Juc
supersonic leading edge	. 683
supersonic leading edge	. 683
supersonic leading edge	683
supersonic leading edge	683 687
supersonic leading edge	683 687 688 690
supersonic leading edge	683 687 688 690 691
 supersonic leading edge	683 687 688 690 691
supersonic leading edge	683 683 687 688 690 691 692 692
supersonic leading edge	. 683 . 687 . 688 . 690 . 691 . 692 . 692 . 693
supersonic leading edge s2. CONSIDERATIONS ON UNSTEADY FLOW AT HIGH SPEEDS 32.1. Linearized equations for unsteady flow 32.2. Reduced potential equation 32.2.1. Reduced downwash 32.2.2. Expansion of the reduced potential 32.2.3. Calculation of the pressures 32.3. Application to a wing of infinite span 32.4 Application to the triangular wing with subsonic leading edges	. 683 . 687 . 688 . 690 . 691 . 692 . 692 . 693 . 695
supersonic leading edge	683 687 688 690 691 692 693 693 695
 supersonic leading edge	683 683 687 688 690 691 692 692 693 693 695 696
supersonic leading edge	683 683 687 688 690 691 692 692 693 695 695 696 697
supersonic leading edge	683 683 683 687 688 690 691 692 692 693 695 695 696 697
supersonic leading edge	683 683 683 683 683 684 685 691 692 693 695 696 697 700
supersonic leading edge	683 683 683 683 684 685 690 691 692 693 695 696 697 700 702
supersonic leading edge	683 683 683 687 687 690 691 692 693 693 695 696 697 700 702 703
supersonic leading edge	683 683 687 688 690 691 692 692 693 695 696 697 700 702 n. 703 . 703
supersonic leading edge	683 683 683 683 684 690 691 692 693 692 693 695 696 697 700 703 703 704
supersonic leading edge	683 683 683 683 683 683 683 683 683 683 683 683 683 690 692 692 693 695 696 697 700 703 703 703 704 705