Contents

Preface	ix
Acknowledgments	xiii
Principal Notation	xv

Chapter 1 Introduction

1.1	Turbulence-Miscellaneous Remarks	2
1.2	The Ubiquity of Turbulence	7
1.3	The Continuum Hypothesis	8
1.4	Measures of Turbulence-Intensity	11
1.5	Measures of Turbulence-Scale	15
1.6	Measures of Turbulence—The Energy Spectrum	20
1.7	Measures of Turbulence—Intermittency	22
1.8	The Diffusive Nature of Turbulence	24
1.9	The Parameters of Primary Interest	28
1.10	Some Consequences of Turbulence	33
1.11	The Impossibility of Calculating Turbulent Flow from First Principles	41
1.12	Background Literature	45

Chapter 2 Conservation Equations for Compressible Turbulent Flows

2.1	Introduction	47
2.2	The Navier-Stokes Equations	48
2.3	Conventional Time-Averaging and Mass-Weighted-Averaging Procedures	49
2.4	Relation between Conventional Time-Averaged Quantities	
	and Mass-Weighted-Averaged Quantities	53
2.5	Continuity and Momentum Equations	54
2.6	Energy Equations	55
2.7	Mean-Kinetic-Energy Equation	56
2.8	Reynolds-Stress Transport Equations	57

. **v**

Chapter 3 The Boundary-Layer Equations

3.1	Introduction	62
3.2	Boundary-Layer Approximations for Compressible Flows	64
3.3	Continuity, Momentum, and Energy Equations	73
3.4	Mean-Kinetic-Energy Equation	81
3.5	Reynolds-Stress Transport Equations	82
3.6	Integral Equations of the Boundary Layer	87

Chapter 4 General Behavior of Turbulent Boundary Layers

4.1	Introduction	91
4.2	Composite Nature of a Turbulent Boundary Layer	91
4.3	Eddy-Viscosity and Mixing-Length Concepts	104
4.4	Mean-Velocity and Shear-Stress Distributions in Incompressible Flows	
	on Smooth Surfaces	113
4.5	Mean-Velocity Distributions in Incompressible Turbulent Flows on	
	Rough Surfaces with Zero Pressure Gradient	128
4.6	Mean-Velocity Distribution on Smooth Porous Surfaces with Zero Pres-	
	sure Gradient	135
4.7	The Crocco Integral for Turbulent Boundary Layers	140
4.8	Mean-Velocity and Temperature Distribution in Compressible Flows	
	with Zero Pressure Gradient	143
4.9	Effect of Pressure Gradient on Mean-Velocity Distributions in Incom-	
	pressible Flows	153

Chapter 5 Various Approaches to the Calculation of Turbulent Boundary Layers

5.1	Introduction	164
5.2	Integral Methods	165
5.3	Differential Methods	168
5.4	Short-Cut Methods	187

Chapter 6 Transport Coefficients in Turbulent Boundary Layers

•

6.1	Introduction	211
6.2	Coefficients of Momentum Transport	212
6.3	Coefficients of Heat Transport	239
6.4	Summary	255

Contents

Chapter 7 The CS Method

7.1	Introduction	258
7.2	The Governing Equations	258
7.3	Transformation of the Equations	260
7.4	Fluid Properties for Air	264
7.5	Keller's Box Method	265
7.6	Keller's Box Method for the Momentum Equation	266
7.7	Solution of the Momentum Difference Equations	269
7.8	Keller's Box Method for the Energy Equation	280
7.9	Solution of the Difference Equations of the Energy Equation	281
7.10	Procedure for Solving Momentum and Energy Equations Simultaneously	289
7.11	Higher-Order Accuracy: Richardson Extrapolation	293
7.12	Estimation of Boundary-Layer Thickness	295
7.13	Boundary-Layer Parameters	296

Chapter 8 The CS Method for Laminar Boundary Layers

8.1	Introduction	298
8.2	Incompressible Laminar Flows	299
8.3	Compressible Laminar Flows	327

Chapter 9 The CS Method for Turbulent Boundary Layers

Introduction	`	329
Prediction of Transition		332
Two-Dimensional Incompressible Flows		335
Axisymmetric Incompressible Flows		355
Two-Dimensional Compressible Flows		359
Axisymmetric Compressible Flows		369
Some Applications of the CS Method		370
	Prediction of Transition Two-Dimensional Incompressible Flows Axisymmetric Incompressible Flows Two-Dimensional Compressible Flows Axisymmetric Compressible Flows	Prediction of Transition Two-Dimensional Incompressible Flows Axisymmetric Incompressible Flows Two-Dimensional Compressible Flows Axisymmetric Compressible Flows

385

S.,/	higget	Index
Sui	jeci	inuex

401