Contents

List of contributors	xvii
Preface	xxi
Introduction	xxiii
PART I AN INTRODUCTION TO GRAVITATIONAL WAVES AND METHODS	
FOR THEIR DETECTION	1
1 Gravitational waves in general relativity	3
D. G. Blair	•
1.1 Introduction to general relativity	3
1.2 Stress energy and curvature	4
1.3 Non-linearity and wave phenomena	7
1.4 Introduction to gravitational waves	8
1.5 The effects of gravitational waves	10
References	15
2 Sources of gravitational waves	16
D. G. Blair	
2.1 Gravitational waves and the quadrupole formula	16
2.2 Strain amplitude, flux and luminosity	20
2.3 Supernovae	21
2.4 Binary coalescence	27
2.5 Other sources of gravitational waves	31
2.5.1 Black holes	31
2.5.2 Pulsars	33
2.5.3 Binary stars	33
2.5.4 Cosmological sources	34
2.6 The rate of burst events	35
2.6.1 Galactic high frequency sources	35
2.6.2 Massive black hole events	38
2.7 Thorne diagrams	38
2.8 Conclusion	40
References	41
3 Gravitational wave detectors	43
D. G. Blair, D. E. McClelland, HA. Bachor and R. J. Sandeman	
3.1 Introduction	43.
3.2 Resonant-bar antennas	45

x Contents

3.3 Noise contributions to resonant bars	47
3.3.1 Brownian motion	48
3.3.2 Series noise	48
3.3.3 Back-action noise	48
3.4 Problems and progress with resonant bars	49
3.4.1 The acoustic-loss problem	. 50
3.4.2 The impedance-matching problem	52
3.4.3 The transducer problem	54
3.4.4 The quantum-limit problem	57
3.5 Electromagnetic detectors	58
3.6 The Michelson laser interferometer	60
3.6.1 Fundamental constraints	62
3.7 Michelson interferometer designs	64
3.7.1 Multi-pass Michelson (MPM)	64
3.7.2 The Fabry-Perot Michelson (FPM)	66
3.7.3 The locked double Fabry-Perot interferometer (LFP)	67
3.8 Conclusion	68
References	69
PART II GRAVITATIONAL WAVE DETECTORS	71
4 Resonant-bar detectors	73
D. G. Blair	
4.1 Introduction	73
4.2 Intrinsic noise in resonant-mass antennas	73
4.3 The signal-to-noise ratio	<i>7</i> 7
4.4 Introduction to transducers	80
4.5 Antenna materials	82
4.6 Antenna suspension and isolation systems	83
4.6.1 Cable suspension	85
4.6.2 Magnetic levitation	86
4.6.3 4-Cables	87
4.6.4 Four-point suspension	88
4.6.5 Nodal point suspension	89
4.6.6 Vibration isolation at room temperature	90
4.7 Excess noise and multiple antenna correlation	91
4.8 Quantum non-demolition and back-action evasion	95
References	98
5 Gravity wave dewars	100
W. O. Hamilton	
5.1 Introduction	100
5.2 Thermodynamic considerations	100
5.3 Mechanical considerations	108
5.4 Practical aspects	111
5.4.1 Pump out time	111
5.4.2 Cooldown time	112
5.4.3 Recovery from accidents	114
Acknowledgements	114
References	114

		Contents	XI
_	Internal Sister in high Constants		
v	Internal friction in high Q materials J. Ferreirinho		116
	6.1 Introduction		116
	6.2 Anelastic relaxation		116
	6.2.1 The anelastic model		120
	6.2.2 Thermal activation		120
	6.3 Anelastic relaxation mechanisms in crystalline solids		125
	6.3.1 Outline		126
	6.3.2 Relaxation mechanisms in a perfect crystal		126
	6.3.3 Defect relaxation mechanisms		127
	6.4 Measured internal friction in niobium and other high Q materials		141
	6.4.1 Internal friction in polycrystalline niobium		152
	6.4.2 Aluminium alloys		152
	6.4.3 Sapphire		162
	6.4.4 Quartz		163
	6.4.5 Silicon		163
	6.5 Summary and comparison of relevant properties of high Q materials		164
	6.5.1 Covalently bonded materials—sapphire, quartz and silicon		164
	6.5.2 Suggestions for further work on other bcc transition metals		164
	References		165
	References		166
7	Motion amplifiers and passive transducers		400
•	JP. Richard and W. M. Folkner		169
	7.1 Introduction		140
	7.2 Multi-mode system analysis		169
	7.2.1 Two-mode systems		170
	7.2.2 Three-mode systems		170
	7.2.3 Generalization to <i>n</i> -mode systems		172
	7.3 Passive transducers and associated amplifiers		173 174
	7.3.1 Capacitance transducer coupled to an FET		
	7.3.2 Inductance modulation transducer coupled to a SQUID		174
	7.3.3 Capacitive transducer coupled to a SQUID amplifier		176
	7.4 Analysis of multi-mode systems		178
	7.4.1 Signal-to-noise ratio with the optimum filter		178
	7.4.2 Analysis of a three-mode system		178
	7.4.3 Analysis of a five-mode system		179
	References		183
	Reservences		184
8	Parametric transducers		186
	P. J. Veitch		
	8.1 Introduction		186
	8.2 The Manley-Rowe equations		189
	8.3 Impedance matrix description		190
	8.4 Modification of the antenna's frequency and acoustic quality factor b	y the	
	transducer	-	194
	8.5 Calculation of the transducer sensitivity and noise characteristics using	ig the	
	equivalent electrical circuit	-	198
	8.5.1 Transducer sensitivity		201
	8.5.2 Calibration of the transducer		206
	8.5.3 Modification of pump noise by the transducer		209

xii Contents

	8.5.4 Power dissipated in the transducer	210
	8.5.5 Nyquist noise produced by the transducer resonant circuit	211
	8.6 Noise analysis: general comments	211
	8.6.1 Description of the phase bridge	212
	8.7 Practical implementation of parametric transducers	216
	8.7.1 The UWA transducer	216
	8.7.2 The Tokyo transducer	220
	8.7.3 The Moscow transducer	222
	8.7.4 The LSU transducer	223
	8.8 Conclusion	224
	Acknowledgements	224
	References	224
9	Detection of continuous waves	226
	K. Tsubono	
	9.1 Antenna properties	227
	9.2 Frequency tuning	232
	9.3 Cold damping	236
	9.4 Detector sensitivity	239
	References	242
10	Data analysis and algorithms for gravitational wave antennas	243
	G. V. Pallottino and G. Pizzella	
	10.1 Introduction	243
	10.2 The antenna response to a gravitational wave	243
	10.3 The basic block diagram and the wide band electronic noise	245
	10.4 The narrow band noise and the total noise	248
	10.5 Data filtering	250
	10.5.1 Detection of short bursts	251
	10.5.2 Detection of longer bursts	256
	10.5.3 Detection of periodic signals	259
	10.6 The cross-section and the antenna sensitivity	260
	10.7 Coincidence techniques	263
	References	264
PA	ART III LASER INTERFEROMETER ANTENNAS	267
11	A Michelson interferometer using delay lines	269
	W. Winkler	
	11.1 Principle of measurement	269
	11.2 Sensitivity limits	270
	11.3 The optical delay line	274
	11.3.1 A laser beam in an optical delay line	274
	11.3.2 Imperfect spherical mirrors	276
	11.3.3 Mirror size	279
	11.3.4 Misalignment and path length variations	282
	11.4 Mechanical noise	283
	11.5 Thermal mechanical noise	285
	11.6 Laser noise and a Michelson interferometer with delay lines	289
	11.6.1 Power fluctuations	289

	Contents	xiii
	11.6.2 Frequency noise	290
	11.6.3 Instabilities in beam geometry	291
	11.7 Scattered light	293
	11.7.1 Amplitudes of scattered light interfering with the main beam	293
	11.7.2 Scattered light and spurious interferometer signals	296
	11.8 Multi-mirror delay line	300
	11.9 Sensitivity of prototype experiments	302
	11.10 Conclusion	304
	Acknowledgement	304
	References	304
12	Fabry-Perot cavity gravity-wave detectors	306
	R. W. P. Drever	
	12.1 Introduction	306
	12.2 Principle of basic interferometer	308
	12.3 Enhancement of sensitivity by light recycling	312
	12.4 Resonant recycling and dual recycling	314
	12.4.1 Resonant recycling	314
	12.4.2 Dual recycling	316
	12.4.3 Resonant recycling interferometers in general	317
	12.5 Other techniques for achieving high sensitivity	318
	12.5.1 Use of squeezed light techniques	318
	12.5.2 Use of auxiliary interferometers to reduce seismic noise	318
	12.6 Experimental strategies with Fabry-Perot systems	319
	12.6.1 Use of interferometers of different length	320
	12.6.2 Concurrent operation of interferometers for different purposes	320
	12.6.3 Detector and vacuum system arrangements to facilitate efficient	
	experiments	322
	12.7 Some practical issues	324
	12.7.1 Mode cleaners and fibre filters	324
	12.7.2 Beam heating effects in mirrors and other components, and	
	techniques for reducing it	325
	12.8 Conclusion	327
	Acknowledgements References	327
	References	327
13	The stabilisation of lasers for interferometric gravitational wave detectors	329
	J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P.	
	Newton, D. I. Robertson, N. A. Robertson and R. Schilling 13.1 Introduction	
	13.2 Laser frequency stability	329
	13.2.1 Delay line systems	330
	13.2.2 Cavity systems	330
	13.2.3 Laser frequency stabilisation	331
	13.2.4 Optical cavity as a frequency discriminator	331
	13.2.5 Transducers for laser frequency control	332
	13.2.6 Feedback amplifying system	337
	13.2.7 Design of the servo system	338
	13.2.8 Typical performance of such a system	338
	13.2.9 Current developments	339 341
	13.2.10 Future prospects	341

xiv Contents

	13.3 Laser beam geometry stabilisation	344
	13.3.1 Passive suppression of geometry fluctuations	345
	13.3.2 Active control of beam pointing	347
	13.4 Laser intensity stabilisation	347
	13.4.1 Fringe detection process	347
	13.4.2 Radiation pressure effects	348
	13.4.3 Methods of intensity stabilisation	348
	13.5 Conclusion	351
	References	351
14	Vibration isolation for the test masses in interferometric gravitational wave	
	detectors	353
	N. A. Robertson	
	14.1 Introduction	353
	14.1.1 Why good broadband seismic isolation is an essential design feature	
	for laser interferometric antennas	353
	14.1.2 The spectrum of seismic noise	353
	14.2 Methods of isolation	356
	14.2.1 Passive techniques	356
	14.2.2 Active techniques	362
	14.3 Conclusions	367
	Acknowledgements	367
	References	367
15	Advanced techniques: recycling and squeezing	369
	A. Brillet, J. Gea-Banacloche, G. Leuchs, C. N. Man and J. Y. Vinet	
	15.1 Introduction to recycling	369
	15.2 Theory of recycling interferometers	369
	15.2.1 Optics in a weakly modulating medium	370
	15.2.2 Standard recycling	376
	15.2.3 Numerical estimations	381
	15.3 Experimental results	383
	15.3.1 Internal modulation	383
	15.3.2 External modulation	384
	15.4 Recycling: the current status	387
	15.5 Use of squeezed states in interferometric gravitational-wave detectors	388
	15.6 The principles of noise reduction using squeezed states	390
	15.7 Squeezed states for non-ideal interferometers	396
	15.8 Squeezing and light recycling	401
	Acknowledgments	404
	References	404
16	Data processing, analysis and storage for interferometric antennas	400
	B. F. Schutz	
	16.1 Introduction	406
	16.1.1 Signals to look for	407
	16.2 Analysis of the data from individual detectors	407
	16.2.1 Finding broad-band bursts	408
	16.2.2 Extracting coalescing binary signals	411
	16.2.3 Looking for pulsars and other fixed-frequency sources	427
	16.3 Combining lists of candidate events from different detectors	438

	Contents	XV
	16.3.1 Threshold mode of data analysis	438
	16.3.2 Deciding that a gravitational wave has been detected	439
	16.4 Using cross-correlation to discover unpredicted sources	440
	16.4.1 The mathematics of cross-correlation: enhancing unexpected signals	441
	16.4.2 Cross-correlating differently polarized detectors	444
	16.4.3 Using cross-correlation to search for a stochastic background	445
	16.5 Reconstructing the signal	446
	16.5.1 Single bursts seen in several detectors	446
	16.6 Data storage and exchange	448
	16.6.1 Storage requirements	449
	16.6.2 Exchanges of data among sites	449
	16.7 Conclusions	450
	Acknowledgements	451
	References	451
17	Gravitational wave detection at low and very low frequencies	453
	R. W. Hellings	
	17.1 Introduction	453
	17.2 LF and VLF gravitational waves	453
	17.3 The effect of a gravitational wave on electromagnetically tracked free	
	masses	454
	17.3.1 One-way tracking	455
	17.3.2 Two-way tracking	457
	17.3.3 Interferometers	459
	17.4 Pulsar timing analysis	459
	17.5 Doppler spacecraft tracking	465
	17.6 Space interferometer gravitational wave experiments	470
	17.6.1 Microwave interferometer	471
	17.6.2 Laser interferometers	473
	References	474
	Inday	477