CONTENTS

PREFACE	v
Part One. HEAT TRANSPER AND RESISTANCE IN TWO-PHASE MEDIA	1
L.D. BERMAN. Heat Transfer During Film Condensation of Vapor on	
Horizontal Tubes in a Transverse Flow	1
V. M. BORISHANSKII and N. N. KOCHUROVA. A General Method for	
Taking into Account the Effect of Physical Properties on Heat	
Transfer During Condensation	41
E. P. ANAN'EV. The Heat-Transfer Mechanism During Nucleate Boiling	
of Water in a Tube and the Reynolds Analogy	49
V. M. BORISHANSKII, A. P. KOZYREV, and L. S. SVETLOVA. Heat Transfer	
During Nucleate Boiling of Liquids	57
E.I. NEVSTRUEVA and R.A. PETROSYAN. Maximum Local Vapor Contents	
in the Boundary Layer During Nucleate Surface Boiling of Water	85
G.G. TRESHCHEV. The Number of Vapor-Formation Centers in Surface	
Boiling	97
V.G. MOROZOV. Heat Transfer During the Boiling of Water in Tubes	106
N.S. ALFEROV and R.A. RYBIN. Heat Transfer in Annular Channels	115
N. V. TARASOVA and V. M. ORLOV. Heat Transfer and Hydraulic	
Resistance During Surface Boiling of Water in Annular Channels	135
V.G. MOROZOV and Yu. Yu. RYNDIN. Heat Transfer During Boiling in	
Annular Channels and Tube Bundles	157
N.G. RASSOKHIN, MA TSANG-WEN, and V.N. MEL'NIKOV. Some	
Experimental Data on Heat Transfer During Surface Boiling of	
Water in Narrow Annular Channels	163
G.V. RATIANI and D.I. AVALIANI. Correlation of Experimental Data	
on Heat Transfer During Boiling of Freon-12 and Freon-22	170
G. N. DANILOVA, V. K. BEL'SKII, and A. V. KUPRIYANOVA. Motion-	
Picture Studies of Freon Vaporization	174
V.M. BORISHANSKII and B.S. FOKIN. Heat Transfer During Film Boiling	
on a Vertical Surface under Conditions of Free Convection in a	
Large Volume	185
V. E. DOROSHCHUK and V. L. MAL'TER. Film Boiling in Tubes	198
V. M. BORISHANSKII, P.A. MASLICHENKO, and B. S. FOKIN. The Vapor	
Layer During Film Boiling on a Vertical Surface	204

I.T. ALAD'EV and V.I. YASHNOV. Effect of Wettability on the Boiling	
Crisis	210
N.S. AIFEROV and R.A. RYBIN. Critical Heat Fluxes for Flows of Water	
and Steam-Water Mixtures in Tubes	236
V.E. DOROSHCHUK and F.P. LANTSMAN. Critical Heat Fluxes for Flows	
of Water and Steam-Water Mixtures in Tubes	247
V.I. SUBBOTIN, B.A. ZENKEVICH, and O.L. PESKOV. Critical Heat	
Fluxes for Forced Flow of Steam-Water Mixtures in Tubes	254
A.G. TKACHEV. Convective Heat Transfer During Melting and Freezing	
of Homogeneous Media	263
Part Two. HEAT TRANSFER AND RESISTANCE IN SINGLE-PHASE FLOWS	279
S.I. MOCHAN. Temperature Differences in Reversed-Flow and Crossflow	
Heat Exchangers	279
V. L. LEL'CHUK and G. I. ELFIMOV. Heat Transfer to Carbon Dioxide	
During Turbulent Flow in Tube with Large Temperature Difference.	291
V. M. BORISHANSKII, L. I. GEL'MAN, T. V. ZABLOTSKAYA, N. I.	
IVASHCHENKO, and I.Z. KOPP. Heat Transfer During Flow of	
Mercury in Horizontal and Vertical Tubes	301
V. M. BORISHANSKII, T. V. ZABLOTSKAYA, and N. I. IVASHCHENKO.	
Heat Transfer and Temperature Fields During Turbulent Flow	
of Metallic Sodium in Tubes	312
V.M. BORISHANSKII and E.V. FIRSOVA. Heat Transfer During Flow of	
Metallic Sodium along a Tube Bundle	326
S. I. MOCHAN and O. G. REVZINA. Aerodynamic Drag for Flow Normal	
to a Tube Bank	333
E. V. FIRSOVA. Heat Transfer and Hydraulic Resistance During Longitudinal	
Flow of Water along a Tube Bundle	359
A.A. ANDREEVSKII, V.M. BORISHANSKII, and V.B. ZHINKINA. Heat	
Transfer in a Staggered Tube Bank in a Transverse Water Flow	363
S. Sh. ROZENBERG. The Velocity Distribution in a Nonisothermal Laminar	
Boundary Layer	371
M. A. POLYATSKIN and O. A. TASS. Intensification of Convective Heat	
Transfer in Gas-Turbine Combustion Chambers	377
V. N. FILATKIN. The Use of Water to Heat or Cool Gravel in Bins	383
INDEX	391