Contents

Introduction	1
 Dimensional Analysis and Similarity Dimensions Dimensional Analysis Similarity 	13 13 17 23
 The Application of Dimensional Analysis to the Construction of Exact Special Solutions to Problems of Mathematical Physics. Self-Similar Solutions Strong Thermal Waves Strong Blast Waves Self-Similarity. Intermediate Asymptotics 	31 31 36 41
 Modified Problem of an Instantaneous Heat Source: Self-Similar Solution of the Second Kind	47 47 48 50 52 58
4. The Problem of a Strong Explosion with Energy Loss or Deposition at the Front of the Shock Wave and the Problem of an Impulsive Load: Self-Similar Solutions of the Second Kind	63

1. Statement of the Modified Problem of a Strong Explosion 63

	 Direct Application of Dimensional Analysis to the Modified Problem of a Strong Point Explosion Resolution of the Paradox. Intermediate Asymptotics Qualitative Investigation of a Nonlinear Eigenvalue Problem Numerical Calculations The Problem of an Impulsive Load Numerical Calculations. Self-Similar Asymptotics Self-Similar Limiting Solution Laws of Conservation of Energy and Momentum in the Problem of an Impulsive Load 	65 67 71 74 78 80 81 83
5.	Classification of Self-Similar Solutions	87 87 92
6.	Self-Similar Solutions and Progressive Waves1. Solutions of Progressive-Wave Type2. Burgers Shock Wave—Steady Progressive Wave of the First Kind3. Flame—Steady Progressive Wave of the Second Kind4. Nonlinear Eigenvalue Problem	101 101 103 105 111
7.	Self-Similarity and Transformation Groups1. Dimensional Analysis and Transformation Groups2. The Boundary Layer on a Flat Plate3. Limiting Self-Similar Solutions4. Rotation of Fluid in a Cylindrical Container	<pre>115 115 117 120 122</pre>
8.	The Spectrum of Exponents in Self-Similar Variables	127
9.	Stability of Self-Similar Solutions	133
10.	 Self-Similar Intermediate Asymptotics of Some Linear Problems in the Theory of Elasticity and the Hydrodynamics of Ideal Fluids 1. The Problem of the Equilibrium of an Elastic Wedge under the Action of a Concentrated Couple Applied at Its Tip 2. The Sternberg-Koiter Paradox. Intermediate Asymptotics of the 	145 145
	Non-Self-Similar Problem	147

xvi

CONTENTS

3. The Use of Self-Similar Solutions for Estimating the Stiffness	
of a Wedge	155
4. The Flow of Ideal Incompressible Fluid in a Corner-Self-Similar	
Solution of the Second Kind	158

11.	Self-Similarities of the First and Second Kind in the Theory of	
	Turbulence. Homogeneous Isotropic Turbulence	161
	1. The Problem of Turbulence	161
	2. Homogeneous Isotropic Turbulence	163
	3. The Decay of Homogeneous Isotropic Turbulence for	
	Negligibly Small Third Moments	164
	4. The Decay of Homogeneous Isotropic Turbulence for Finite	
	Third Moments	167
	5. Locally Isotropic Turbulence	177

12.	Se	If-Similarities of the First and Second Kind in the Theory of	
	Τu	rbulence. Shear Flow	181
	1.	The Wall Region of a Turbulent Shear Flow	181
	2.	Similarity Laws for the Atmospheric Surface Layer	185
	3.	Similarity Laws for Flow in a Turbulent Wall Region with	
		Adverse Pressure Gradient	189
	4.	Unsteady Phenomena in the Viscous Layer of a Turbulent	
		Shear Flow	193
	5.	The Regime of Limiting Saturation of a Turbulent Shear Flow	
		Loaded with Sediment	198
Ері	logu	Je	205

Epilogue	205
References	207
Index	213