CONTENTS

CHAPTER I

KINEMATLCAL PRELIMINARIES

section page

1. The displacements of rigid bodies 1
2. Euler's theorem on rotations ahout a point 2
3. The theorem of Rodrigues and Hamilton. 3
4. The composition of equal and opposite rotations about parallel axes 3
5. Chasles' theorem on the most general displacement of a rigid body 4
6. Halphen's theorem on the composition of two general displacements 5
7. Analytic representation of a displacement 6
8. The composition of small rotations 7
9. Euler's parametric specification of rotations round a point 8
10. The Eulerian angles 9
11. Connexion of the Eulerian angles with the parameters ξ, η, ζ, x 10
12. The connexion of rotations with homographies: the Cayley-Klein parameters 11
13. Vectors 13
14. Velocity and acceleration ; their vectorial character 14
15. Angular velocity; its vectorial character 15
16. Determination of the components of angular velocity of a system in terms of the Eulerian angles, and of the symmetrical parameters 16
17. Time-flux of a vector whose components relative to moving axes are given 17
18. Special resolutions of the velocity and acceleration 18
Miscellaneous Examples 22
CHAPTER II
THE EQUATIONS OF MOTION
19. The ideas of rest and motion 26
20. The laws which determine motion 27
21. Force 29
22. Work 30
23. Forces which do no work 31
24. The coordinates of a dynamical system 32
25. Holonomic and non-holonomic systems 33
section page
26. Lagrange's form of the equations of motion of a holonomic system 34
27. Conservative forces ; the kinetic potential 38
28. The explicit form of Lagrange's equations 39
29. Motion of a system which is constrained to rotate uniformly round an axis 40
30. The Lagrangian equations for quasi-coordinates 41
31. Forces derivable from a potential-function which involves the velocities 44
32. Initial motions 45
33. Similarity in dynamical systems 47
34. Motion with reversed forces 47
35. Impulsive motion 48
36. The Lagrangian equations of impulsive motion 50
Miscelilaneous Examples 51
CHAPTER III
PRINCIPLES AVAILABLE FOR THE INTEGRATION
37. Problems which are soluble by quadratures 52
38. Systems with ignorable coordinates 54
39. Special cases of ignoration ; integrals of momentum and angular momentum 58
40. The general theorem of angular momentum 61
41. The energy equation. 62
42. Reduction of a dynamical problem to a problem with fewer degrees of freedom, by means of the energy equation 64
43. Separation of the variables ; dynamical systems of Liouville's type 67
Miscellaneous Examples 69
CHAPTER IV
THE SOLUBLE PROBLEMS OF PARTICLE DYNAMICS
44. The particle with one degree of freedom; the pendulum 71
45. Motion in a moving tube 74
46. Motion of two interacting free particles 76
47. Central forces in general : Hamilton's theorem 77
48. The integrable cases of central forces; problems soluble in terms of circular and elliptic functions 80
49. Motion under the Newtonian law 86
50. The mutual transformation of fields of central force and fields of prallel force 93
51. Bonnet's theorem 94
52. Determination of the most general field of force under which a given curve or family of curves can be described 95
53. The problem of two centres of gravitation 97
54. Motion on a surface 99
55. Motion on a surface of revolution; cases soluble in terms of circular and elliptic functions 103
56. Joukovsky's theorem 109
Miscellaneous Exampirs HII

Contents

CHAPTER V

THE DYNAMICAL SPECIFICATION OF BODIES

SECTION Page
57. Definitions 117
58. The moments of inertia of some simple bodies 118
59. Derivation of the moment of inertia about any axis when the moment of inertia about a parallel axis through the centre of gravity is known 121
60 Connexion between moments of inertia with respect to different sets of axes through the same origin 122
61. The principal axes of inertia; Cauchy's momental ellipsoid 124
62. Calculation of the angular momentum of a moving rigid body 124
63. Calculation of the kinetic energy of a moving rigid body 126
64. Independence of the motion of the centre of gravity and the motion relative to it 127
Miscellaneous Examples 129

CHAPTER VI

THE SOLUBLE PROBLEMS OF RIGID DYNAMICS

65. The motion of systems with one degree of freedom; motion round a fixed axis, etc. 131
66. The motion of systems with two degrees of freedom 137
67. Initial motions 141
68. The motion of systems with three degrees of freedom 143
69. Motion of a body about a fixed point under no forces 144
70. Poinsot's kinematical representation of the motion; the polhode and herpolhode 152
71. Motion of a top on a perfectly rough plane; determination of the Eulerian angle θ 155
72. Determination of the remaining Eulerian angles, and of the Cayley-Klein parameters; the spherical top 159
73. Motion of a top on a perfectly smooth plane 163
74. Kowalevski's top 164
75. Impulsive motion 167
Miscellaneous Examples 169
CHAPTER VII
THEORY OF VIBRATIONS
76. Vibrations about equilibrium 177
77. Normal coordinates. 178
78. Sylvester's theorem on the reality of the roots of the determinantal equation 183
79. Solution of the differential equations; the periods; stability 185
80. Examples of vibrations about equilibrium 187
81. Effect of a new constraint on the periods of a vibrating system 191
82. The stationary character of normal vibrations 192
83. Vibrations about steady motion 193
84. The integration of the equations 195
85. Examples of vibrations about steady motion 203
86. Vibrations of systems involving moving constraints 207
Miscellaneous Examples 208
CHAPTER VIII
NON-HOLONOMIC SYSTEMS. DISSIPATIVE SYSTEMS
section page
87. Lagrange's equations with undetermined multipliers 214
88. Equations of motion referred to axes moving in any manner 216
89. Application to special non-holonomic problems 217
90. Vibrations of non-holonomic systems 221
91. Dissipative systems; frictional forces 226
92. Resisting forces which depend on the velocity 229
93. Rayleigh's dissipation-function 230
94. Vibrations of dissipative systems 232
95. Impact 234
96. Loss of kinetic energy in impact 234
97. Examples of impact 235
Miscellaneoos Examples 238

CHAPTER IX

THE PRINCIPLES OF LEAST ACTION AND LEAST CURVATURE
98. The trajectories of a dynamical system 245
99. Hamilton's principle for conservative holonomic systems 245
100. The principle of Least Action for conservative holonomic systems 247
101. Extension of Hamilton's principle to non-conservative dynamical systems 248
102. Extension of Hamilton's principle and the principle of Least Action to non-holonomic systems 249
103. Are the stationary integrals actual minima? Kinetic foci 250
104. Representation of the motion of dynamical systems by means of geodesics 253
105. The least-curvature principle of Gauss and Hertz. 254
106. Expression of the curvature of a path in terms of generalised coordinates 256
107. Appell's equations 258
108. Bertrand's theorem 260
Miscellaneous Examples 261
CHAPTER X
HAMILTONIAN SYSTEMS AND THEIR INTEGRAL-INVARIANTS
109. Hamilton's form of the equations of motion 263
110. Equations arising from the Calculus of Variations. 265
111. Integral-invariants 267
112. The variational equations 268
113. Integral-invariants of order one 269
114. Relative integral-invariants 271
115. A relative integral-invariant which is possessed by all Hamiltonian systems 272
116. On systems which possess the relative integral-invariant $\int \Sigma p \delta q$ 272
117. The expression of integral-invariants in terms of integrals 274
118. The theorem of Lie and Koenigs 275
119. The last multiplier 276

Contents

SECTION PAGE
120. Derivation of an integral from two multipliers 279
121. Application of the last multiplier to Hamiltonian systems; use of a single known integral 280
122. Integral-invariants whose order is equal to the order of the system 283
123. Reduction of differential equations to the Lagrangian form 284
124. Case in which the kinetic energy is quadratic in the velocities 285
Miscellaneous Examples 286

CHAPTER XI

THE TRANSFORMATION-THEORY OF JYNAMICS

125. Hamilton's Characteristic Function and contact-transformations 288
126. Contact-transformations in space of any number of dimensions 292
127. The bilinear covariant of a general differential form 296
128. The conditions for a contact-transformation expressed by means of the bilinear covariant 297
129. The conditions for a contact-transformation in terms of Lagrange's bracket- expressions 298
130. Poisson's bracket-expressions 299
131. The conditions for a contact-transformation expressed by means of Poisson's bracket-expressions 300
132. The sub-groups of Mathieu transformations and extended point-transforma- tions 301
133. Infinitesimal contact-transformations 302
134. The resulting new view of dynamics 304
135. Helmholtz's reciprocal theorem 304
136. Jacobi's theorem on the transformation of a given dynamical system into another dynamical system 305
137. Representation of a dynamical problem by a differential form 307
138. The Hamiltonian function of the transformed equations 309
139. Transformations in which the independent variable is changed 310
140. New formulation of the integration-problem 310
Miscellaneous Examples 311

CHAPTER XII

PROPERTIES OF THE INTE(rRALS OF DYNAMICAL SYSTEMS

141. Reduction of the order of a Hamiltonian system by use of the energy integral 313
142. Hamilton's partial differential equation.
143. Hamilton's integral as a solution of Hanilton's partial differential equation 316
144. The connexion of integrals with infinitesinal transformations admitted by
the system 318
145. Poisson's theorem 320
146. The constancy of Lagrange's brucket-expressions 321
147. Involution-systems 322
SECTION page
148. Solution of a dynamical problem when half the integrals are known 323
149. Levi-Civita's theorem 325
150. Systems which possess integrals linear in the momenta. 328
151. Determination of the forces acting on a system for which an integral is known 331
152. Application to the case of a particle whose equations of motion possess an integral quadratic in the velocities. 332
153. General dynamical systems possessing integrals quadratic in the velocities 335
Miscellaneons Examples 336
CHAPTER XIII
THE REJ)UCTION OF THE PROBLEM OF THREE BODIES
154. Introduction 339
155. The differential equations of the problem 340
156. Jacobi's equation 342
157. Reduction to the 12 th order, by use of the integrals of motion of the centre of gravity 343
158. Reduction to the 8 th order, by use of the integrals of angular momentum and elimination of the nodes 344
159. Reduction to the 6 th order 347
160. Alternative reduction of the problem from the 18 th to the 6 th order 348
161. The problem of three bodies in a plane 351
162. The restricted problem of three bodies 353
163. Extension to the problem of n bodies 356
Miscellaneous Examples 356

CHAPTER XIV

THE THEOREMS OF BRUNS AND POINCARE

164. Bruns' theorem

section page
165. Poincaré's theorem
(i) The equations of motion of the restricted problem of three bodies 380
(ii) Statement of Poincarés theorem 381
(iii) Proof that Φ_{0} is not a function of H_{0} 381
(iv) Proof that Φ_{0} cannot involve the variables q_{1}, q_{2}. 382
(v) Proof that the existence of a one-valued integral is inconsistent with the result of (iii) in the general case 383
(vi) Removal of the restrictions on the coefficients $B_{m_{1}}, m_{2}$. 384
(vii) Deduction of Poincarés theorem 385
CHAPTER XV
THE GENERAL THEORY OF ORBI'S'S
166. Introduction 386
167. Periodic solutions 386
168. A criterion for the discovery of periodic orbits 386
169. Asymptotic solutions 389
170. The orbits of planets in the relativity-theory 389
171. The motion of a particle on an ellipsoid under no external forces 393
172. Ordinary and singular periodic solutions 395
173. Characteristic exponents 397
174. Characteristic exponents when t does not occur explicitly 398
175. The characteristic exponents of a system which possesses a one-valued integral 399
176. The theory of matrices 400
177. The characteristic exponents of a Hamiltonian system 402
178. The asymptotic solutions of $\S 170$ deduced from the theory of characteristic exponents 405
179. The characteristic exponents of "ordinary" and "singular" periodic solutions 406
180. Lagrange's three particles 406
181. Stahility of Lagrange's particles: periodic orbits in the vicinity 409
182. The stability of orbits as affected by terms of higher order in the displacement, 412
183. Attractive and repellent regions of a field of force 413
184. Application of the energy integral to the problem of stability 416
185. Application of integral-invariants to investigations of stability 417
186. Synge's "Geometry of Dynamics" 417
187. Connexion with the theory of surface transformations 420
Miscellaneots Examples 420

CHAPTER XVI

INTEGRATION BY SERIES

188. The need for series which converge for all values of the tirne; Poincare's series 42.3
189. The regularisation of the problem of three bodies 424
190. Trigonometric series 425
191. Removal of terms of the first degree from the energy function 426
section page
192. Determination of the normal coordinates by a contact-transformation 427
193. Transformation to the trigonometric form of H 430
194. Other types of motion which lead to equations of the same form 431
195. The problem of integration 432
196. Determination of the adelphic integral in Case I 433
197. An example of the adelphic integral in Case I 436
198. The question of convergence 437
199. Use of the adelphic integral in order to complete the integration 438
200. The fundamental property of the adelphic integral 442
201. Determination of the adelphic integral in Case II 443
202. An example of the adelphic integral in Case II 444
203. Determination of the adelphic integral in Case III 446
204. An example of the adelphic integral in Case III 447
205. Completion of the integration of the dynamical systern in Cases II and III 449
Miscellaneous Examples 449
Index of authors quoted 451
Index of terms employed 453
