CONTENTS

CHAPTER I

KINEMATICAL PRELIMINARIES

SECI	rion	PAGE
1.	The displacements of rigid bodies	1
2.	Euler's theorem on rotations about a point	2
3.	The theorem of Rodrigues and Hamilton	3
4.	The composition of equal and opposite rotations about parallel axes	3
5.	Chasles' theorem on the most general displacement of a rigid body	4
6.	Halphen's theorem on the composition of two general displacements	5
7.	Analytic representation of a displacement	6
8.	The composition of small rotations	7
9.	Euler's parametric specification of rotations round a point	8
10.	The Eulerian angles	9
11.	Connexion of the Eulerian angles with the parameters ξ , η , ζ , χ	10
12.	The connexion of rotations with homographies: the Cayley-Klein parameters	11
13,	Vectors	13
14.	Velocity and acceleration; their vectorial character.	14
15.	Angular velocity; its vectorial character	15
16.	Determination of the components of angular velocity of a system in terms of	
	the Eulerian angles, and of the symmetrical parameters	16
17,	Time-flux of a vector whose components relative to moving axes are given .	17
18.	Special resolutions of the velocity and acceleration	18
	MISCELLANEOUS EXAMPLES	22

CHAPTER II

THE EQUATIONS OF MOTION

19,	The ideas	of re	st ar	id mot	tion	•							26
20.	The laws	which	det	ermin	e mot	ion		•					27
21.	Force											•	29
22.	Work												30
23,	Forces wh	nich d	o no	work									31
24.	The coord	linate	s of	a dyna	m ica	l sys	tem						32
25.	Holonomi	ic and	non	-holor	omic	syst	ems		•				33
						•							

SECT	ION		PAGE
26.	Lagrange's form of the equations of motion of a holonomic system		34
27.	Conservative forces; the kinetic potential	•	38
28.	The explicit form of Lagrange's equations		39
29.	Motion of a system which is constrained to rotate uniformly round an axis		40
30.	The Lagrangian equations for quasi-coordinates		41
31.	Forces derivable from a potential-function which involves the velocities.		44
32.	Initial motions		45
33.	Similarity in dynamical systems		47
34.	Motion with reversed forces		47
35.	Impulsive motion		48
36.	The Lagrangian equations of impulsive motion		50
	MISCELLANEOUS EXAMPLES		51

CHAPTER III

PRINCIPLES AVAILABLE FOR THE INTEGRATION

37.	Problems which are soluble by quadratures	52
38.	Systems with ignorable coordinates	54
39.	Special cases of ignoration ; integrals of momentum and angular momentum .	58
40.	The general theorem of angular momentum	61
41.	The energy equation	62
42.	Reduction of a dynamical problem to a problem with fewer degrees of	
	freedom, by means of the energy equation.	64
43.	Separation of the variables; dynamical systems of Liouville's type	67
	MISCELLANEOUS EXAMPLES	69

CHAPTER IV

THE SOLUBLE PROBLEMS OF PARTICLE DYNAMICS

The particle with one degree of freedom; the pendulum	71
Motion in a moving tube	74
Motion of two interacting free particles	76
Central forces in general: Hamilton's theorem	77
The integrable cases of central forces: problems soluble in terms of circular	
and elliptic functions .	80
Motion under the Newtonian law	86
The mutual transformation of fields of central force and fields of parallel	
force	93
Bonnet's theorem	94
Determination of the most general field of force under which a given curve or	01
family of curves can be described	95
The problem of two centres of gravitation	97
Motion on a surface	99
Motion on a surface of revolution : cases soluble in terms of circular and elliptic	00
functions	103
Joukovsky's theorem	109
MISCELLANEOUS EXAMPLES	100
	The particle with one degree of freedom; the pendulum

viii

CHAPTER V

THE DYNAMICAL SPECIFICATION OF BODIES

SECTI	ON	PAGE
57.	Definitions	117
58.	The moments of inertia of some simple bodies	118
59.	Derivation of the moment of inertia about any axis when the moment of inertia	
	about a parallel axis through the centre of gravity is known	121
60	Connexion between moments of inertia with respect to different sets of axes	
	through the same origin	122
61.	The principal axes of inertia; Cauchy's momental ellipsoid	124
62.	Calculation of the angular momentum of a moving rigid body	124
63.	Calculation of the kinetic energy of a moving rigid body	126
64.	Independence of the motion of the centre of gravity and the motion relative	
	to it	127
	Miscellaneous Examples	129

CHAPTER VI

THE SOLUBLE PROBLEMS OF RIGID DYNAMICS

65.	The motion of systems with one degree of freedom; motion round a fixed
	axis, etc
66.	The motion of systems with two degrees of freedom
67.	Initial motions
68.	The motion of systems with three degrees of freedom
69.	Motion of a body about a fixed point under no forces
70.	Poinsot's kinematical representation of the motion; the polhode and herpolhode
71.	Motion of a top on a perfectly rough plane; determination of the Eulerian angle θ
72.	Determination of the remaining Eulerian angles, and of the Cayley-Klein
	parameters; the spherical top
73.	Motion of a top on a perfectly smooth plane
74.	Kowalevski's top
75.	Impulsive motion
	Miscellaneous Examples

CHAPTER VII

THEORY OF VIBRATIONS

76.	Vibrations about equilibrium	•			177
77.	Normal coordinates				178
78.	Sylvester's theorem on the reality of the roots of the determina	ntal eq	uatio	n.	183
79.	Solution of the differential equations; the periods; stability.		•		185
80.	Examples of vibrations about equilibrium				187
81.	Effect of a new constraint on the periods of a vibrating system	ı.			191
82.	The stationary character of normal vibrations	•			192
83.	Vibrations about steady motion				193
84.	The integration of the equations				195
85.	Examples of vibrations about steady motion				203
86.	Vibrations of systems involving moving constraints				207
	MISCELLANEOUS EXAMPLES	•	•	•	208

CHAPTER VIII

NON-HOLONOMIC SYSTEMS. DISSIPATIVE SYSTEMS

SECTIO	N	PAGE
87.	Lagrange's equations with undetermined multipliers	214
88.	Equations of motion referred to axes moving in any manner	216
89.	Application to special non-holonomic problems	217
90.	Vibrations of non-holonomic systems	221
91.	Dissipative systems; frictional forces	226
92.	Resisting forces which depend on the velocity	229
93.	Rayleigh's dissipation-function	230
94.	Vibrations of dissipative systems	232
95.	Impact	234
96.	Loss of kinetic energy in impact	234
97.	Examples of impact	235
	Miscellaneous Examples	23 8

CHAPTER IX

THE PRINCIPLES OF LEAST ACTION AND LEAST CURVATURE

98.	The trajectories of a dynamical system	245
99.	Hamilton's principle for conservative holonomic systems	245
100.	The principle of Least Action for conservative holonomic systems	247
101.	Extension of Hamilton's principle to non-conservative dynamical systems .	248
102.	Extension of Hamilton's principle and the principle of Least Action to	
	non-holonomic systems	249
103.	Are the stationary integrals actual minima? Kinetic foci	250
104.	Representation of the motion of dynamical systems by means of geodesics.	253
105.	The least-curvature principle of Gauss and Hertz.	254
106.	Expression of the curvature of a path in terms of generalised coordinates .	256
107.	Appell's equations	258
108.	Bertrand's theorem	260
	Miscellaneous Examples	261

CHAPTER X

HAMILTONIAN SYSTEMS AND THEIR INTEGRAL-INVARIANTS

109.	Hamilton's form of the equations of motion	3
110.	Equations arising from the Calculus of Variations	5
111.	Integral-invariants	7
112.	The variational equations	8
113.	Integral-invariants of order one	9
114.	Relative integral-invariants	1
115.	A relative integral-invariant which is possessed by all Hamiltonian systems 279	2
116.	On systems which possess the relative integral-invariant $\int \Sigma p \delta q$ 275	2
117.	The expression of integral-invariants in terms of integrals	4
118.	The theorem of Lie and Koenigs	5
119.	The last multiplier	6

SECTIO	N		PAGE
120.	Derivation of an integral from two multipliers		279
121.	Application of the last multiplier to Hamiltonian systems; use of a s	ingle	
	known integral		2 80
122.	Integral-invariants whose order is equal to the order of the system .		283
123.	Reduction of differential equations to the Lagrangian form		284
124.	Case in which the kinetic energy is quadratic in the velocities		285
	MISCELLANEOUS EXAMPLES		286

CHAPTER XI

THE TRANSFORMATION-THEORY OF DYNAMICS

125.	Hamilton's Characteristic Function and contact-transformations	288
126.	Contact-transformations in space of any number of dimensions	292
127.	The bilinear covariant of a general differential form	296
128.	The conditions for a contact-transformation expressed by means of the	
	bilinear covariant	297
129.	The conditions for a contact-transformation in terms of Lagrange's bracket-	
	expressions	298
130.	Poisson's bracket-expressions .	299
131.	The conditions for a contact-transformation expressed by means of Poisson's	
	bracket-expressions	3 00
132.	The sub-groups of Mathieu transformations and extended point-transforma-	
	tions	301
133,	Infinitesimal contact-transformations	302
134.	The resulting new view of dynamics	304
135.	Helmholtz's reciprocal theorem	304
136.	Jacobi's theorem on the transformation of a given dynamical system into	
	another dynamical system	305
137.	Representation of a dynamical problem by a differential form	3 07
138.	The Hamiltonian function of the transformed equations	309
139.	Transformations in which the independent variable is changed	310
140.	New formulation of the integration-problem	310
	Miscellaneous Examples	311

CHAPTER XII

PROPERTIES OF THE INTEGRALS OF DYNAMICAL SYSTEMS

141.	Reduction of the	orde	r of a	Ham	iltoni	an sy	stem	by u	se of	the ci	n <mark>er</mark> gy	integ	gral	313
142.	Hamilton's parti	al diff	ferenti	ial eq	uatio	п.								314
143.	Hamilton's integ	ral as	a sol	ution	of I	Iamil	ton's	parti	ial di	fferen	itial c	equat	ion	316
144.	The connexion of	of inte	grals	with	infi	nitesin	mal t	ransf	orma	tions	adm	itted	by	
	the system													318
145.	Poisson's theorem	n.												320
146.	The constancy of	Lagi	ange's	s bra	eket-e	expres	ssions	ι.						321
147.	Involution-system	ms.												322

SECTIO	ON CONTRACT OF	PAGE
148.	Solution of a dynamical problem when half the integrals are known	323
149.	Levi-Civita's theorem	325
150.	Systems which possess integrals linear in the momenta.	328
151.	Determination of the forces acting on a system for which an integral is	
	known	33]
152.	Application to the case of a particle whose equations of motion possess an	
	integral quadratic in the velocities.	332
153.	General dynamical systems possessing integrals quadratic in the velocities .	33(
	MISCELLANEOUS EXAMPLES	336

CHAPTER XIII

THE REDUCTION OF THE PROBLEM OF THREE BODIES

154.	Introduction					•		•	•	339
155.	The differential equations of the pro-	blem				•		•		340
156.	Jacobi's equation					•				342
157.	Reduction to the 12th order, by use	of the	inte	grals	of mo	tion	of the	cen	tre	
	of gravity									343
158.	Reduction to the 8th order, by use of	the in	tegra	als of	angula	r m	omenti	ım a	and	
	elimination of the nodes					•				344
159.	Reduction to the 6th order						•			347
160.	Alternative reduction of the problem	ı from	\mathbf{the}	18th	to the	6th	order			34 8
161.	The problem of three bodies in a pla	ne .								351
162.	The restricted problem of three body	ies .							•	353
163.	Extension to the problem of n bodies	s.								356
	MISCELLANEOUS EXAMPLES			۰.			•			356

CHAPTER XIV

THE THEOREMS OF BRUNS AND POINCARÉ

164.	Bruns' theorem			
	(i) Statement of the theorem		. 3	58
	(ii) Expression of an integral in terms of the essential coordinates	of	the	
	(iii) An integral must invalue the moments	·	· ·	190
	(m) An integral must involve the momenta.	•	. č	199
	(iv) Only one irrationality can occur in the integral		. 3	60
	(v) Expression of the integral as a quotient of two real polynomials		. 8	361
	(vi) Derivation of integrals from the numerator and denominator	of	the	362
	$\frac{q_{0000000}}{1000000000000000000000000000$	•	•	202
	(vii) Proof that ϕ_0 does not involve the irrationality	•	. i	166
	(viii) Proof that ϕ_0 is a function only of the momenta and the integration of the	grals	s of	
	angular momentum		. :	371
	(ix) Proof that ϕ_0 is a function of T, L, M, N		. 8	374
	(x) Deduction of Bruns' theorem, for integrals which do not involve	t	. 8	376
	(xi) Extension of Bruns' result to integrals which involve the time		. 8	378

xii

SECTI	ON						PAGE
165.	Poinc	aré's theorem					
	(i)	The equations of motion of the restricted problem	of thre	e bot	lies	•	3 80
	(ii)	Statement of Poincaré's theorem			•	•	381
	(iii)	Proof that Φ_0 is not a function of H_0				•	381
	(iv)	Proof that Φ_0 cannot involve the variables q_1, q_2 .					382
	(v)	Proof that the existence of a one-valued integral is i	nconsis	tent	with	the	
		result of (iii) in the general case		•		•	383
	(vi)	Removal of the restrictions on the coefficients B_{m_1}	, m _o •	•		•	384
	(vii)	Deduction of Poincaré's theorem	٠.	•	•		3 85

CHAPTER XV

THE GENERAL THEORY OF ORBITS

166,	Introduction	•	•	•	386
167.	Periodic solutions		•		386
168.	A criterion for the discovery of periodic orbits			•	386
169.	Asymptotic solutions		•	•	389
170.	The orbits of planets in the relativity-theory		•	•	389
171.	The motion of a particle on an ellipsoid under no external forces	ι.			39 3
172.	Ordinary and singular periodic solutions	•	•	•	395
173.	Characteristic exponents		•		397
1 74 .	Characteristic exponents when t does not occur explicitly		•	•	398
175.	The characteristic exponents of a system which possesses a one-va-	lued	integr	ral	399
176.	The theory of matrices	•		•	400
177.	The characteristic exponents of a Hamiltonian system			•	402
178.	The asymptotic solutions of § 170 deduced from the theory of c	hara	eteris	tie	
178.	The asymptotic solutions of § 170 deduced from the theory of exponents	hara	eteris	tic	405
178. 179.	The asymptotic solutions of § 170 deduced from the theory of a exponents The characteristic exponents of "ordinary" and "singular" period	hara dic s	eteris olutio	tic ns	405 406
178. 179. 180.	The asymptotic solutions of § 170 deduced from the theory of a exponents The characteristic exponents of "ordinary" and "singular" period Lagrange's three particles	harad dic so	eteris olutio	tic ns	405 406 406
178. 179. 180. 181.	The asymptotic solutions of § 170 deduced from the theory of a exponents	harad	eteris olutio	tic	405 406 406 409
178. 179. 180. 181. 182.	The asymptotic solutions of § 170 deduced from the theory of a exponents The characteristic exponents of "ordinary" and "singular" period Lagrange's three particles	hara dic s i i displa	eteris olutio	tic	405 406 406 409 412
178. 179. 180. 181. 182. 183.	The asymptotic solutions of § 170 deduced from the theory of a exponents	haraa dic s dic s displa	steris olutio	tic	405 406 406 409 412 413
178. 179. 180. 181. 182. 183. 184.	 The asymptotic solutions of § 170 deduced from the theory of exponents The characteristic exponents of "ordinary" and "singular" period Lagrange's three particles Stability of Lagrange's particles: periodic orbits in the vicinity The stability of orbits as affected by terms of higher order in the Attractive and repellent regions of a field of force Application of the energy integral to the problem of stability 	haraa dic s dic s disple	eteris olutio	tic ns	405 406 406 409 412 413 416
178. 179. 180. 181. 182. 183. 184. 185.	 The asymptotic solutions of § 170 deduced from the theory of a exponents The characteristic exponents of "ordinary" and "singular" period Lagrange's three particles Stability of Lagrange's particles : periodic orbits in the vicinity The stability of orbits as affected by terms of higher order in the Attractive and repellent regions of a field of force Application of the energy integral to the problem of stability Application of integral-invariants to investigations of stability 	harad die so die so displa	eteris olutio 	tic ns	405 406 409 412 413 416 417
178. 179. 180. 181. 182. 183. 184. 185. 186.	The asymptotic solutions of § 170 deduced from the theory of exponents	harad dic so dic so displa	eteris olutio	tic	405 406 409 412 413 416 417 417
178. 179. 180. 181. 182. 183. 184. 185. 186. 187.	The asymptotic solutions of § 170 deduced from the theory of a exponents	haraa dic s displa	eteris olutio	tic ns	405 406 409 412 413 416 417 417 420

CHAPTER XVI

INTEGRATION BY SERIES

188.	The need for	series	which	conv	erge	for a	all val	ues	of the	tim	e; Po	oinca	ré's	
	series													423
189.	The regularisa	tion of	the p	roblen	of	three	bodie	я.						424
190	Trigonometric	series												425
191.	Removal of te	rms of	the fi	rst deg	ree i	from	the er	nergy	/ functi	on	·		•	426

SECTIO	ON			PAGE
192.	Determination of the normal coordinates by a contact-transformation	•		427
193.	Transformation to the trigonometric form of H			430
194.	Other types of motion which lead to equations of the same form .			431
195.	The problem of integration			432
196.	Determination of the adelphic integral in Case I			433
197.	An example of the adelphic integral in Case I			436
198.	The question of convergence			437
199.	Use of the adelphic integral in order to complete the integration .			43 8
200.	The fundamental property of the adelphic integral		•	442
201.	Determination of the adelphic integral in Case II		•	443
202.	An example of the adelphic integral in Case II			444
203.	Determination of the adelphic integral in Case III			446
204.	An example of the adelphic integral in Case III	•		447
205.	Completion of the integration of the dynamical system in Cases II an	d III		449
	MISCELLANEOUS EXAMPLES	•	•	449
	Index of authors quoted			451
	INDEX OF TERMS EMPLOYED			453

xiv