Contents

	Prefa	ce	ix
1	Intro	luction	1
	1.1	Historical background	1
	1.2	Chaotic dynamics in Duffing's oscillator	3
	1.3	Attractors and bifurcations	9
PA	RT I	BASIC CONCEPTS OF NONLINEAR DYNAMICS	
2	An o	verview of nonlinear phenomena	15
	2.1	Undamped, unforced linear oscillator	15
	2.2	Undamped, unforced nonlinear oscillator	17
	2.3	Damped, unforced linear oscillator	19
	2.4	Damped, unforced nonlinear oscillator	20
	2.5	Forced linear oscillator	21
	2.6	Forced nonlinear oscillator: periodic attractors	23
	2.7	Forced nonlinear oscillator: strange attractor	25
3	Point	attractors in autonomous systems	27
	3.1	The linear oscillator	27
	3.2	Nonlinear pendulum oscillations	36
	3.3	Evolving ecological systems	44
	3.4	Competing point attractors	49
4	Limit	cycles in autonomous systems	51
	4.1	The single attractor	51
	4.2	Limit cycle in a neural system	52
	4.3	Bifurcations of a chemical oscillator	56
	4.4	Multiple limit cycles in aeroelastic galloping	60
	4.5	Topology of two-dimensional phase space	63
5	Perio	dic attractors in driven oscillators	65
	5.1	The Poincaré map	65

	5.2	Linear resonance	67
	5.3	Nonlinear resonance	69
	5.4	The smoothed variational equation	74
	5.5	Variational equation for subharmonics	76
	5.6	Domains of attraction by mapping techniques	77
	5.7	Resonance of a self-exciting system	80
6	Chaotic attractors in forced oscillators		
	6.1	Relaxation oscillations and heartbeat	84
	6.2	The Birkhoff–Shaw chaotic attractor	87
	6.3	Systems with nonlinear restoring force	98
7	Stability and bifurcations of equilibria and cycles		
	7.1	Liapunov stability and structural stability	108
	7.2	Centre manifold theorem	111
	7.3	Local bifurcations of equilibrium paths	113
	7.4	Local bifurcations of cycles	125
	7.5	Prediction of incipient instability	128

PART II ITERATED MAPS AS DYNAMICAL SYSTEMS

8	Stability and bifurcation of maps		
	8.1	Introduction	135
	8.2	Stability of one-dimensional maps	138
	8.3	Bifurcations of one-dimensional maps	139
	8.4	Stability of two-dimensional maps	150
	8.5	Bifurcations of two-dimensional maps	158
9	Chaotic behaviour of one- and two-dimensional maps		
	9.1	General outline	162
	9.2	Theory for one-dimensional maps	165
	9.3	Bifurcations to chaos	170
	9.4	Bifurcation diagram of one-dimensional maps	173
	9.5	Hénon map	177
		-	

PART III FLOWS, OUTSTRUCTURES, AND CHAOS

10	The geometry of recurrence		
	10.1	Finite-dimensional dynamical systems	187
	10.2	Types of recurrent behaviour	192
	10.3	Hyperbolic stability types for equilibria	200
	10.4	Hyperbolic stability types for limit cycles	206
	10.5	Implications of hyperbolic structure	211

vi

11	The Lorenz system			
	11.1	A model of thermal convection	212	
	11.2	First convective instability	215	
	11.3	The chaotic attractor of Lorenz	219	
	11.4	Geometry of a transition to chaos	227	
12	Rössler's band			
	12.1	The simply folded band in an autonomous system	235	
	12.2	Return map and bifurcations	239	
	12.3	Smale's horseshoe map	245	
	12.4	Transverse homoclinic trajectories	251	
13	Geometry of bifurcations			
	13.1	Local bifurcations	254	
	13.2	Global bifurcations in the phase plane	263	
	13.3	Bifurcations of chaotic attractors	272	

PART IV APPLICATIONS IN THE PHYSICAL SCIENCES

14	Subharmonic resonances of an offshore structure		
	14.1	Basic equation and non-dimensional form	292
	14.2	Analytical solution for each domain	294
	14.3	Digital computer program	295
	14.4	Resonance response curves	296
	14.5	Effect of damping	301
	14.6	Computed phase projections	302
	14.7	Multiple solutions and domains of attraction	305
15	Chaotic motions of an impacting system		
	15.1	Resonance response curve	310
	15.2	Application to moored vessels	314
	15.3	Period-doubling and chaotic solutions	316
16	The	particle accelerator and Hamiltonian dynamics	321
	16.1	The physical model	322
	16.2	The mathematical model	323
	16.3	Resonance and Arnold diffusion	324
	16.4	The standard map	327
17	Experimental observations of order and chaos		
	17.1	Introduction	332
	17.2	Four nonlinear systems	333
	17.3	Analysis of dynamical behaviour	335
	17.4	Transition sequences	340
	17.5	Discussion	347

viii

Refere	nces and	Bibliography	••••••	350
Index				370