CONTENTS

Page
Preface 9
Introduction 10
PART ONE. STATICS OF RIGID BODIES
Chapter 1. Basic Concepts and Principles

1. The Subject of Statics 13
2. Force 14
3. Fundamental Principles 16
4. Constraints and Their Reactions 19
5. Axiom of Constraints 22
Chapter 2. Concurrent Force Systems
6. Geometrical Method of Composition of Concurrent Forces 23
7. Resolutior. of Forces 25
8. Projection of a Force on an $A x$ is and on a Plane 28
9. Analytical Method of Defining a Force 30
10. Analytical Method for the Composition of Forces 31
11. Equilibrium of a System of Concurrent Forces 32
12. Problems Statically Determinate and Statically Indeterminate 34
13. Solution of Problems of Statics 35
14. Moment of a Force About an Axis (or a Point) 43
15. Varignon's Theorem of the Moment of a Resultant 45
16. Equations of Moments of Concurrent Forces 46
Chapter 3. Parallel Forces and Couples in a Plane
17. Composition and Resolution of Parallel Forces 47
18. Force Couples. Moment of a Couple 50
19. Equivalent Couples 51
20. Composition of Coplanar Couples. Conditions for the Equilibrium of Couples 53
Chapter 4. General Case of Forces in a Plane
21. Theorem of the Translation of a Force to a Parallel Position 55
22. Reduction of a Coplanar Force System to a Given Centre 56
23. Reduction of a Coplanar Force System to the Simplest Possible Form 58
24. Conditions for the Equilibrium of a Coplanar Force System 61
25. Equilibrium of a Coplanar System of Parallel Forces 63
26. Solution of Problems 63
27. Equilibrium of Systems of Bodies 70
28. Distributed Forces 74
Chapter 5. Elements of Graphical Statics
29. Force and String Polygons. Reduction of a Coplanar Force Sys- tem to Two Forces 78
30. Graphical Determination of a Resultant 80
31. Graphical Determination of a Resultant Couple 80
32. Graphical Conditions of Equilibrium of a Coplanar Force System 81
33. Determination of the Reactions of Consfraints 81
34. Graphical Analysis of Plane Trusses 82
35. The Maxwell Diagram 85
Chapter 6. Friction
36. Laws of Static Friction 86
37. Reactions of Rough Constraints. Angle of Friction 88
38. Equilibrium with Friction 89
39. Belt Friction 92
40. Rolling Friction and Pivot Friction 94
Chapter 7. Couples and Forces in Space
41. Moment of a Force About a Point as a Vector 95
42. Moment of a Force with Respect to an Axis 97
43. Relation Between the Moments of a Force about a Point and an Axis 100
44. Vector Expression of the Moment of a Couple 101
45. Composition of Couples in Space. Conditions of Equilibrium of Couples 101
46. Reduction of a Force System in Space to a Given Centre 104
47. Reduction of a Force System in Space to the Simplest Possible Form 106
48. Condition of Equilibrium of an Arbitrary Force Systent in Space. The Case of Parallel Forces 108
49. Varignon's Theorem of the Moment of a Resultant with Respect to an Axis 109
50. Problems on the Equilibrium of Bodies Subjected to the Action of Force Systems in Space 110
51. Conditions of Equilibrium of a Constrained Rigid Body. Concept of Stability of Equilibrium 117
Chapter 8. Centre of Gravity
52. Centre of Parallel Forces 118
53. Centre of Gravity of a Rigid Body 120
54. Coordinates of Centres of Gravity of Homogeneous Bodies 122
55. Methods of Determining the Coordinates of the Centre of Gravity of Bodies 122
56. Centre of Gravity of Sorne Homogeneous Bodies 125
PART II. KINEMATICS OF A PARTICLE AND A RIGID BODY
Chapter 9. Rectilinear Motion of a Particle
57. Introduction to Kinematics 128
58. Equation of Rectilinear Motion 129
59. Velocity and Acceleration of a Particle in Rectilinear Motion 130
60. Some Examples of Rectilinear Motion of a Particle 132
61. Graphs of Displacement, Velocity and Acceleration of a Particle 134
62. Solution of Problems 135
Chapter 10. Curvilinear Motion of a Particle
63. Vector Method of Describing Motion of a Particle 137
64. Velocity Vector of a Particle 138
65. Acceleration Vector of a Particle 139
66. Theorem of the Projection of the Derivative of a Vector 141
67. Coordinate Method of Describing Motion. Determination of the Path, Velocity and Acceleration of a Particle 142
68. Natural Method of Describing Motion. Determination of the Veloc- ity of a Particle 147
69. Tangential and Normal Acceleration of a Particle 148
70. Some Special Cases of Particle Motion 151
71. Velocity in Polar Coordinates 156
72. Graphical Analysis of Particle Motion 156
Chapter 11. Translatory and Rotational Motion of a Rigid Body
73. Motion of Translation 160
74. Rotational Motion of a Rigid Body. Angular Velocity and Angu- lar Acceleration 162
75. Uniform and Uniformly Variable Rotation 164
76. Velocities and Accelerations of the Points of a Rotating Body 166
Chapter 12. Plane Motion of a Rigid Body
77. Equations of Plane Motion. Resolution of Motion into Transla- tion and Rotation 170
78. Determination of the Paths of the Points of a Body 172
79. Determination of the Velocity of Any Point of a Body 173
80. Theorem of the Projections of the Velocities of Two Points of a Body 174
81. Determination of the Velocity of Any Point of a Body Using the Instantaneous Centre of Zero Velocity 175
82. Solution of Problems 178
83. Velocity Diagram 182
84. Determination of the Acceleration of Any Point ofea Body 184
85. Instantaneous Centre of Zero Acceleration 191
Chapter 13. Motion of a Rigid Body Having One Fixed Point and Mo- tion of a Free Rigid Body
86. Motion of a Rigid Body Having One Fixed Point 193
87. Velocity and Acceleration of Any Point of a Body 195
88. The Most General Motion of a Free Rigid Body 196
Chapter 14. Resultant Motion of a Particle
89. Relative, Transport, and Absolute Motion 198
90. Composition of Velocities 200
91. Composition of Accelerations. Coriol is Theorem 203
92. Calculation of Coriolis Acceleration 207
93. Solution of Problems 209
Chapter 15. Resultant Motion of a Rigid Body
94. Composition of Translatory Motions 215
95. Composition of Rotations About Two Parallel Axes 215
96. Toothed Spur Gearing
218
218
97. Composition of Rotations About Two Intersecting Axes 221
98. Composition of a Translation and a Rotation Screw Motion 223

PART THREE. PARTICLE DYNAMICS

Chapter 16. Introduction to Dynamics. Laws of Dynamics
99. Basic Concepts and Definitions 226
100. The Laws of Dynamics 227
101. Systems of Units 230
102. The Problems of Dynamics for a Free and a Constrained Particle 230
103. Solution of the First Problem of Dynamics 231
Chapter 17. Differential Equations of Motion for a Particle and Their Integration
104. Rectilinear Motion of a Particle 233
105. Solution of Problems 236
106. Body Falling in a Resisting Medium (in Air) 241
107. Curvilinear Motion of a Particle 244
108. Motion of a Particle Thrown at an Angle to the Horizon in a Uniform Gravitational Field 245
Chapter 18. General Theorems of Particle Dynamics
109. Momentum and Kinetic Energy of a Particle 248
110. Inpulse of a Force 249
111. Theorem of the Change in the Momentum of a Particle 250
112. Work Done by a Force. Power 251
113. Examples of Calculation of Work 254
114. Theorem of the Change in the Kinetic Energy of a Particle, 256
115. Solution of Problems 258
116. Theorem of the Change in the Angular Momentum of a Particle (the Principle of Moments) 264
Chapter 19. Constrained Motion of a Particle and D'Alembert's Principle
117. Equations of Motion of a Particle Along a Given Fixed Curve 268
118. Determination of the Reactions of Constraints 270
119. D'Alєmbert's Principle 272
Chapter 20. Relative Motion of a Particle
120. Equations of Relative Motion and Rest of a Particle 275
121. Effect of the Rotation of the Earth on the Equilibrium and Motion of Bodies 278
122. Deflection of a Falling Particle from the Vertical by the Earth's Rotation 281
Chapter 21. Vibration of a Particle
123. Free Harmonic Motion 284
124. The Simple Pendulum 288
125. Damped Vibrations 289
126. Forced Vibrations. Resoname 291
Chapter 22. Motion of a Body in the Earth's Gravitational Field
127. Motion of a Particle Thrown at an Angle to the Horizon in theEarth's Gravitational Field299
128. Artificial Earth Satellites. Elliptical Paths 304

PART IV. DYNAMICS OF A SYSTEM AND A RIGID BODY

Chapter 23. Introduction to the Dynamics of a System. Moments of Inertia of Rigid Bodies
129. Mechanical Systems. External and Internal Forces 308
130. Mass of a System. Centre of Mass 309
131. Moment of Inertia of a Body About an Axis. Radius of Gyration 310
132. Moments of Inertia of Some Homogeneous Bodies 311
133. Moments of Inertia of a Body About Parallel Axes. The Parallel- Axis (Huygens') Theorem 313
Chapter 24. Theorem of the Motion of the Centre of Mass of a System
134. The Differential Equations of Motion of a System 315
135. Theorem of the Motion of Centre of Mass 316
136. The Law of Conservation of Motion of Centre of Mass 317
137. Solution of Problems 319
Chapter 25. Theorem of the Change in the Linear Momentum of a System
138. Linear Momentum of a System 323
139. Theorem of the Change in Linear Momentum 324
140. The Law of Conservation of Linear Mornentum 325
141. Solution of Problems 326
142. Bodies Having Variable Mass. Motion of a Rocket 329
Chapter 26 . Theorem of the Change in the Angular Momentum of a System
143. Total Angular Momentum of a System 332
144. Theorem of the Change in the Angular Momentum of a System (the Principle of Moments) 333
145. The Law of Conservation of the Total Angular Momentum 334
146. Solution of Problems 337
Chapter 27. Theorem of the Change in the Kinetic Energy of a System
147. Kinetic Energy of a System 339
148. Theorem of the Change in the Kinetic Energy of a System 344
149. Some Cases of Computation of Work 346
150. Solution of Problems 348
151. Field of Force. Potential Energy 353
152. The Law of Conservation of Mechanical Energy 355
Chapter 28. Some Cases of Rigid-Body Mction
153. Rotation of a Rigid Body 356
154. The Compound Pendulum 359
155. Determination of Moments of Inertia by Experiment 351
156. Plane Motion of a Rigid Body 351
157. Approximate Theory of Gyroscopic Action $30 ิ 8$
Chapter 29. D'Alembert's Principle. Forces Acting on the Axis of a Rotating Body
158. D'Alembert's Principle for a System 373
159. The Principal Vector and the Principal Moment of the Inertia Forces of a Rigid Body 374
160. Solution of Problems 376
161. Dynamical Pressures on the Axis of a Rotating Body 380
162. The Principal Axes of Inertia of a Body. Dynamic Balancing of Masses 382
Chapter 30. The Principle of Virtual Work and the General Equation of Dynamics
163. Virtual Displacements of a System. Degrees of Freedom 386
164. Ideal Constraints 388
165. The Principle of Virtual Work 388
166. Solution of Problems 390
167. The General Equation of Dynamics 395
Chapter 31. The Theory of Impact
168. The Fundamental Equation of the Theory of Impact 398
169. General Theorems of the Theory of Impact 400
170. Coefficient of Restitution 401
171. Impact of a Body Against a Fixed Obstacle 403
172. Direct Central Impact of Two Bodies (Impact of Spheres) 405
173. Loss of Kinetic Energy in Perfectly Inelastic Impact. Carnot's Theorem 407
174. Impact with a Rotating Body 409
Name Index 414
Subject Index 414

