PREFACE TO	TH	E SERIES	xvii
PREFACE			xix
NOTATION		3	xiii
PART 1. PART	ICL	ES	
CHAPTER 1		THE ELEMENTS OF DYNAMICS	
	1.	Phase Space	1
		Trajectories and Phase Flux	1
		Hamiltonian Systems	2
		Liouville's Theorem	3
		The Equation of Continuity	4
	2.	Systems with One Degree of Freedom	5
		The Phase Portrait	5
		"Action-Angle" Variables	8
		The Spectrum of Nonlinear Oscillations	9
		Spreading of a Phase Drop	12
	3.	An Example: The Nonlinear Pendulum	13
		Nonlinear Pendulum Trajectories	13
		The Spectrum of the Nonlinear Pendulum	17
		The General Properties of the Oscillation	21
		Period	
	4.	Two More Examples of Nonlinear Oscillations	23
		Nonlinear Plasma Oscillations	23
		Oscillations in a Square Well	27
		The Rotator	28
	5.	Poincaré's Integral Invariants	30
		The First Integral Invariant	30
		Liouville's Theorem	31
	6.	Multidimensional Integrable Systems	32
		The First Integrals of Motion	32
		The Liouville-Arnol'd Theorem	33
		Invariant Tori	34

	Resonances	34
	Action-Angle Variables	35
	The Uniqueness of Invariant Tori	37
	Corollaries	38
	Spectral Decomposition	39
	A Non-Trivial Example (The Toda Chain)	40
7.	Mappings	41
	Discrete Time	42
	Poincaré Mappings	43
	The Equilibrium of Chains of Atoms	45
8.	Some Remarks in Conclusion	48
	Notes to Chapter 1	49
	APPROXIMATE METHODS	
1.	Perturbation Theory	52
	Perturbation and Phase-Space Topology	52
	Series in Powers of the Perturbation	52
	Perturbation of Free Motion	54
	Resonances and Small Denominators	56
	Internal Resonances	58
	Particle-Wave Resonance	61
	Wave Front Overturning	63
	A Note on Power Series	66
2.	The Averaging Method	67
	The Averaging Theorem	67
	The Averaged Equations	69
	The Van der Pol Equation	70
	Motion in High-Frequency Fields	73
	A Pendulum with an Oscillating Point	
	of Suspension	76
	Vortex Drift	78
3.	Adiabatic Invariants	82
	Determining Adiabatic Invariants	83
	Averaging of the Equations	84
	Variation of an Adiabatic Invariant	86
	Adiabatic Invariants at $N > 2$	87
	Violation of Adiabatic Invariance	89
	Almost Adiabatic Invariants	93
4.	Charged Particles in a Magnetic Field	93
	Drift Approximation	93
	Adiabatic Invariants	96

CHAPTER 2

	CONTENTS	vii
	5. Linear Analogues of Adiabatic Invariance A Linear Oscillator with Variable	98
	Frequency	98
	A Quantum Mechanical Analogy	101
	Going Round Singularities in the	
		102
	The Transfer Matrix	105
	Transition Radiation	107
	A Note on the Role, Played by	
	Nonlinearity	110
	Notes to Chapter 2	111
CHAPTER 3	SPECIAL METHODS	
		115
		115
	1	119
		123
	2. The Kolmogorov–Arnold–Moser (KAM)	
		125
		125
		126
		126
	Corollary	128
	3. Structural Properties of Phase Trajectories	129
	Classification of Singular Points	129
		133
	Topological Equivalence	135
	Poincaré Indices	137
	1	138
		139
	2	139
	4. Simple Bifurcations	141
	Tangent Bifurcation	142
	8	144
	Pitchfork Bifurcation	144
	Poincaré–Andronov–Hopf (PAH)	
	Bifurcation	145
	e	151
	Sharkovsky's Theorem	155
	A Note on Bifurcations	155
	Notes to Chapter 3	156

CONTENTS

1.Ergodicity and Mixing158 Measure in Phase Space158 ErgodicityMixing162 The Spectrum1632.K-systems164 Local Instability164 ExampleLocal Instability164 Example167 The Relation between Mixing and Local Instability168 K-systemsK-systems168 K-systems168 Kolmogorov-Sinai Entropy1693.Examples172 Anosov Diffeomorphisms175 Billiards9.Examples172 Anosov Diffeomorphisms175 Billiards4.Recurrences and Periodic Orbits180 Poincaré's Theorem on Recurrences9.Periodic Orbits184 Example9.Structure of the Mapping for Nonlinear Oscillations191 Structure of the Mapping9.Spectral Properties201 Spectral Properties
Ergodicity161Mixing162The Spectrum1632.K-systems164Local Instability164Example167The Relation between Mixing and LocalInstabilityInstability168K-systems168Kolmogorov-Sinai Entropy1693.Examples172Anosov Diffeomorphisms175Billiards1784.Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1.A Universal Mapping for NonlinearOscillations191Structure of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Mixing162The Spectrum1632.K-systems164Local Instability164Example167The Relation between Mixing and LocalInstabilityInstability168K-systems168Kolmogorov-Sinai Entropy1693.Examples172Anosov Diffeomorphisms175Billiards1784.Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1.A Universal Mapping for NonlinearOscillations191Structure of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Spectrum1632.K-systems164Local Instability164Example167The Relation between Mixing and LocalInstabilityInstability168K-systems168Kolmogorov–Sinai Entropy1693.Examples172Anosov Diffeomorphisms175Billiards1784.Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine–Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1.A Universal Mapping for NonlinearOscillations191Structure of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
2.K-systems164Local Instability164Example167The Relation between Mixing and LocalInstabilityInstability168K-systems168Kolmogorov-Sinai Entropy1693.Examples172Anosov Diffeomorphisms175Billiards1784.Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1.A Universal Mapping for NonlinearOscillations191Structure of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Local Instability164Example167The Relation between Mixing and LocalInstability168K-systems168Kolmogorov-Sinai Entropy1693. Examples172Anosov Diffeomorphisms175Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear91Oscillations191Structure of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Example167The Relation between Mixing and LocalInstability168K-systems168Kolmogorov-Sinai Entropy1693. Examples172Anosov Diffeomorphisms175Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear Oscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Relation between Mixing and LocalInstability168K-systems168Kolmogorov–Sinai Entropy1693. Examples172Anosov Diffeomorphisms175Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine–Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Oscillations191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Instability168K-systems168Kolmogorov-Sinai Entropy1693. Examples172Anosov Diffeomorphisms175Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Oscillations191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
K-systems168 Kolmogorov-Sinai Entropy1693. Examples172 Anosov Diffeomorphisms172 Anosov Diffeomorphisms3. Examples1784. Recurrences and Periodic Orbits180 Poincaré's Theorem on Recurrences9000 Poincaré's Theorem on Recurrences181 Periodic Orbits9000 Periodic Orbits184 Example9000 Periodic Orbits184 Example910 Perivation of the Mapping191 Derivation of the Mapping911 Derivation of the Mapping194 The Stochasticity Criterion912 Periodic Orbits198 The Stochastic Sea913 Spectral Properties201
Kolmogorov-Sinai Entropy1693. Examples172Anosov Diffeomorphisms175Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Oscillations191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
3. Examples172 Anosov Diffeomorphisms175 Billiards4. Recurrences and Periodic Orbits180 Poincaré's Theorem on Recurrences9. Periodic Orbits181 Periodic Orbits9. Periodic Orbits184 Example185 The Sine-Transform185 The Sine-Transform186 Bowen's Theorem187 Notes to Chapter 4188CHAOS IN DETAIL1. A Universal Mapping for Nonlinear Oscillations191 Structure of the Mapping191 Derivation of the Mapping194 The Stochasticity Criterion196 The Structure of Phase Space198 The Stochastic Sea199 Spectral Properties201
Anosov Diffeomorphisms 175 Billiards 178 4. Recurrences and Periodic Orbits 180 Poincaré's Theorem on Recurrences 181 Periodic Orbits 184 Example 185 The Sine–Transform 186 Bowen's Theorem 187 Notes to Chapter 4 188 CHAPTER 5 CHAOS IN DETAIL 1. A Universal Mapping for Nonlinear Oscillations 191 Structure of the Mapping 194 The Stochasticity Criterion 196 The Structure of Phase Space 198 The Stochastic Sea 199 Spectral Properties 201
Billiards1784. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
4. Recurrences and Periodic Orbits180Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Poincaré's Theorem on Recurrences181Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Periodic Orbits184Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1.A Universal Mapping for NonlinearOscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Example185The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Sine-Transform186Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for Nonlinear191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Bowen's Theorem187Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for NonlinearOscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Notes to Chapter 4188CHAPTER 5CHAOS IN DETAIL1. A Universal Mapping for NonlinearOscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
CHAPTER 5 CHAOS IN DETAIL 1. A Universal Mapping for Nonlinear Oscillations 191 Structure of the Mapping 191 Derivation of the Mapping 194 The Stochasticity Criterion 196 The Structure of Phase Space 198 The Stochastic Sea 199 Spectral Properties 201
1. A Universal Mapping for NonlinearOscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Oscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Oscillations191Structure of the Mapping191Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
Derivation of the Mapping194The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Stochasticity Criterion196The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Structure of Phase Space198The Stochastic Sea199Spectral Properties201
The Stochastic Sea199Spectral Properties201
Time Scales 205
Reduction to One-Dimensional Mixing 206
The One-dimensional Correlator 207
2. Overlapping of Resonances 210
Constructing a Set of Resonances 210
The Resonance Overlap Condition 212
The Resonance Overlap Condition212

viii

		CONTENTS	ix
		Width of the Stochastic Layer Overlapping of Resonances Close to a	218
		Separatrix	222
		Homoclinic Structure	225
			228
	4.	Destruction of the Integrals of Motion	231
		The Nature of the Destruction of Integrals	232
		Two-dimensional Oscillations	233
		Coupled Rotators	234
	5.	Stochastic Attractors	237
		Finite Motion	238
		Attractors and Repellers	238
		The Stochastic Attractor	239
		Quasi-Attractors	241
	6.	Examples of Stochastic Attractors	242
		Standard Dissipative Mapping	242
		The Condition for the Onset of	
		Stochasticity	246
		The Structure of the Stochastic Attractor	248
		The Stochastic Attractor for Overlapping	
		Resonances	250
	7.	General Notes on the Onset of Chaos	252
		The Stochastic Web	252
		Arnold Diffusion	253
		Cantori	255
		Slowing-Down of the Diffusion	257
		Rotation Number	258
		The KAM-torus \rightarrow Cantorus Transition	259
		The Devil's Staircase	259
	Not	tes to Chapter 5	260
		-	
CHAPTER 6		ELEMENTS OF KINETICS	
	1.	The Fokker-Planck-Kolmogorov Equation	263
		The Structure of the Equation	263
		Time Scales	264
		Derivation of the Kinetic Equation	265
		The Divergence Form of the Kinetic	
		Equation	267
		Influence of the Stochasticity Threshold	269
		Correlation Effects	271
	2.	Kinetics in Dissipative Mappings	277
		Structure of the Kinetic Equation	277

		Dynamics of Moments	278
	3.	Stochastic Acceleration and "Heating" of	
		Particles	279
		Stochasticity and the Concepts of Heating	
		and Acceleration	280
		Ulam's Model	280
		Acceleration in a Gravitational Field	285
		Stochastic Heating in the Field of a	
		Wave Packet	288
		The Effect of Friction on the Dynamics in	
		a Wave Packet	293
	No	tes to Chapter 6	294
CHAPTER 7		FRACTAL PROPERTIES OF CHAOS	
	1.	Fractals	297
		Hausdorff Dimensionality	297
		Examples	299
		Definition of a Fractal	301
		Relation to the Renormalization Group	302
	2.	Fractals and Chaos	304
		The Dimensionality of a Stochastic	
		Attractor	304
		Fractal Properties of Mode Locking	308
		Branching Dimensionality	310
		Distributions and Spectral Density	311
	No	otes to Chapter 7	312

PART 2. WAVES

CHAPTER 8		NONLINEAR STATIONARY WAVES	
	1.	Steepening of Waves	315
		Travelling Waves	315
		Overturning of the Wave Front	317
		The Role Played by Dissipation. Burgers'	
		Equation	319
		Reynolds Number	323
		The Shock Wave Spectrum	323
	2.	Stationary Waves	325
		Shock Wave	325
		Influence of Dispersion. The Korteveg-de	
		Vries (KdV) Equation	326

х

	CONTENTS	xi
	The Spectrum of Periodic Waves	331
	Nonlinear Dispersion	332
	3. Examples of Stationary Waves	333
	Ion-Acoustic Waves	334
	Critical Velocity	336
	Magnetosonic Waves	338
	The Sine-Gordon Equation	341
	4. Collision-Free Shock Waves	343
	Formation of a Wave	344
	The Structure of the Wave Front	345
	Magnetosonic Shock Wave	348
	Formation of a Bore	350
	Acceleration of Ions at the Wave Front	351
	Notes to Chapter 8	353
CHAPTER 9	HAMILTONIAN DESCRIPTION OF WA	VES
	1. Variational Principles	355
	Degrees of Freedom	355
	The Lagrangian Function	357
	Witham's Method	358

	HAMLET ONTAIL DESCRIPTION OF WA	V LO
1.	Variational Principles	355
	Degrees of Freedom	355
	The Lagrangian Function	357
	Witham's Method	358
	The Hamiltonian Formalism	361
	Stationary Waves	364
	Canonical Variables	365
2.	Resonance Interaction of Waves	369
	Decay and Nondecay Spectra	369
	Equations for Waves	371
	Evolution of a Wave Triplet	373
	Decay Instability	376
	An Analogy with Parametric Resonance	377
	Decay of a Plasmon	379
3.	Nonlinear Wave Resonances	382
	The Coupling Constant	382
	External Perturbation	383
	The Abbreviated Equations	386
	Nonlinear Resonance	388
4.	Interaction of Nonlinear Waves	392
	Small Interaction Parameter	392
	Multidimensional Ionic Sound	393
	Two-Wave Interaction	396
	Three-Wave Interaction	400
No	tes to Chapter 9	405

CULADTED 10		CHAOS IN WAVE FIELDS	
CHAPTER 10	1		407
	1.	Weakly Nonlinear Fields	407
		Construction of the Mapping Local Phase Instability	408
		K–Entropy	416
		Correlation Decay	418
	2.	The Fermi-Pasta-Ulam (FPU) Problem	419
	2.	Equations and Initial Assumptions	419
		On the Transition from Discreteness to	420
		Continuity	421
		Estimate of the Stochasticity Region	422
	3.	Turbulence of a Weakly Nonlinear Field	425
	5.	The Master Equation	426
		Kinetics of Phonons	429
		Weak Turbulence	431
	4.	Stochastic Instability of a Nonlinear Wave	433
	т.	The Canonical Equations	433
		Spacing between Resonances	435
		Overlapping of Resonances	437
		Diffusional Wave Dynamics	438
	No	tes to Chapter 10	441
	1.0		
CHAPTER 11		STRONG TURBULENCE	
	1.	Lorenz Model	444
		The Equations of Lorenz Model	444
		Linearization	447
		The Sequence of Bifurcations	448
		The Lorenz Attractor	449
	2.	Convective Cells	450
		Benard–Rayleigh Convection	450
		Instabilities	453
		The Onset of Turbulence	455
		Electrohydrodynamic Convection	455
		Turbulence and Disordered Structures	456
	3.	Features of the Onset of Turbulence	457
		Is There a Turbulence Scenario?	457
		Is Dissipation Necessary?	458
		Local Instability and Fractalness	459
		The Central Peak	459
		Space-Time Chaos	459
	4.	Langmuir Turbulence	460
		The Formation of a "Plasmon Condensate"	460

xii

Modulational Instability	462
The Collapse of Langmuir Oscillations	465
Turbulence	469
5. Soliton Turbulence	470
Notes to Chapter 11	472

CHAPTER 12		EXACTLY INTEGRABLE WAVE	
		EQUATIONS	
	1.	Integration of the KdV Equation	475
		Lax Operator Pairs	475
		The ISP (Inverse Scattering Problem)	
		Method	478
		Soliton Solutions	481
		N-Soliton Solutions	482
		Integrals of Motion	484
	2.	Integrable Equations	486
	No	tes to Chapter 12	487

PART 3. EXAMPLES

CHAPTER 13		MOTION OF PARTICLES IN WAVE FIELDS		
	1.	Regular and Stochastic Dynamics of Particles		
		in the Field of a Wave Packet		
		Time-like and Space-like Packets	490	
		Mappings	491	
		Dynamics in a Space-like Packet	495	
		The Kinetics of the Stochastic Heating		
		of Particles	496	
		Generalization	500	
	2.	Motion in a Magnetic Field and the Field of		
		a Wave Packet	502	
		The Equation of Motion	502	
		Particle-Wave Resonance	505	
		Longitudinal Motion Resonance		
		Overlapping	508	
		The Kinetic Equation	510	
	3.	The Paradox of the Disappearance of		
		Landau Damping	511	
	4.	Stochastic Web	513	
		Mapping with a Twist	513	
		Resonant Twisting	515	
		The Phase Plane	516	

		Resonance α^4	517
		Formation of a Stochastic Web	521
		Phase Plane Symmetry	523
		Diffusion	524
	No	tes to Chapter 13	527
CHAPTER 14		BILLIARDS	
	1.	Mixing Billiards	529
	1.	Analysis of Trajectories	529
		The Kinetics of a Particle in Billiards	532
	2.	Nonlinear–Ray Dynamics	535
	2.	The Ray–Trajectory Equations	535
		Nonlinear Spatial Resonance	538
		Example	539
		Two-Dimensional Cross-Sections	542
CHAPTER 15		NONLINEAR OPTICS	
	1.	Nonlinear Geometrical Optics	543
	1.	Narrow Wave Beams	543
		The Parabolic Equation	545
		Self-Contraction of Wave Packets	547
		Self-Focusing	549
		Stability Thresholds	551
		Stationary Waves	552
	2.	Nonlinear Cooperative Phenomena	552
	2.	Resulting from the Interaction of a	
		Radiation Field with Matter	554
		Cooperative Effects	555
		"Atoms + Radiation Field" as a	555
		Dynamic System	556
		The Bound State of Atoms with a	550
		Radiation Field	560
		Destruction of the Bound State	564
	No	tes to Chapter 15	568
	140	tes to enapter 15	500
CHAPTER 16		STRUCTURAL PROPERTIES OF ONE-	
		DIMENSIONAL CHAINS	
	1.	Atom Chains	569
		The Discrete Sine-Gordon Equation	570
		Stationary States of a Chain	571
		Nonlinear Resonance in Structures	572

xiv

		CONTENTS	xv
		Incommensurate Structures	575
	2.	Spin Chains	577
		Equilibrium Conditions	577
		The Equivalent Dynamic System	579
		Chaotic Structures and Short-range	
		Order in Them	580
	3.	Excitation in Chains of Molecules	583
		Description of the Model	583
		Collective Excitations	584
	Notes to Chapter 16		
CHAPTER 17		PERTURBATIONS IN KEPLER'S PROB	(FM
	1.	Nonlinear Dynamics in a Coulomb Field	591
		The Parameters of Motion	591
		Action-Angle Variables	593
		Spectral Properties	594
	2.	Excitation and Ionization of a	07.
		Hydrogen Atom	597
	3.	Diffusion of the Eccentricity of Orbits in	
		the Gravitational Field of Planets	600
		Mascons	601
		Multipole Expansion	601
		Variation of the Integrals of Motion	603
		Resonances and Their Width	603
		Overlapping of Resonances	606
		Diffusional Orbits	608
	4.	Diffusion of Comets from the Oort Cloud	611
		The Oort Cloud	611
		A Simple Mapping	613
		Diffusion of Orbits	616
		Other Perturbations	618
	Notes to Chapter 17 .6		

PART 4. NUMERICAL SIMULATION

Α.	Nonlinear Physics in Colour			
	Gene	ral Notes on the Pictures	623	
Β.	Diskett	es	623	
C.	The ATRS Program			
	C.1.	User's Manual	624	
	C.1.1.	General Information on the Progr	am	
		Loading and Starting	624	

	C.1.2.	Working With Mappings	626
	C.1.3.	Setting the Mapping Parameters	629
	C.1.4.	Mapping Screen Geometry	631
	C.1.5.	Studying Local Instability	634
	C.1.6.	Creating a New Type of Mapping	635
	C.1.7.	Producing a Film	637
	C.1.8.	Showing a Film	639
	C.1.9.	Storing Dynamic Scenes and Photos	
		in the Memory	640
	C.1.10.	Description of the Mappings	641
	C.2.	The Programmer's Manual	641
	C.2.1.	Description of Subroutines	642
	C.2.2.	Program Source Code Listing	652
REFERENCES			653
INDEX			667
COLOUR PLATES	5		671