Contents

Preface		vii
Chapte	r 1 Fundamentals of Newtonian Mechanics	1
	istorical Survey of Mechanics	1
	ewton's Laws	9
	ipulse and Momentum	12
1.4 M	oment of a Force and Angular Momentum	12
1.5 W	ork and Energy	14
1.6 E ₁	nergy Diagrams	17
1.7 Sy	ystems of Particles	21
1.8 T	ne Two-Body Central Force Problem	25
1.9 T	ne Inverse Square Law. Orbits of Planets and Satellites	30
	cattering by a Repulsive Central Force	37
	oblems	40
Sı	aggested References	44
Chapte	r 2 Fundamentals of Analytical Mechanics	45
2.1 D	egrees of Freedom. Generalized Coordinates	46
	ystems with Constraints	48
	he Stationary Value of a Function	53
	he Stationary Value of a Definite Integral	55

xii	Contents
All	Contents

2.5	The Principle of Virtual Work	59
2.6	D'Alembert's Principle	65
2.7	Hamilton's Principle	66
2.8	Lagrange's Equations of Motion	72
2.9	Lagrange's Equations for Impulsive Forces	79
	Conservation Laws	82
2.11	Routh's Method for the Ignoration of Coordinates	85
2.12	Rayleigh's Dissipation Function	88
2.13	Hamilton's Equations	91
	Problems	97
	Suggested References	100
Cha	pter 3 Motion Relative to Rotating Reference Frames	101
3.1	Transformation of Coordinates	102
3.2	Rotating Coordinate Systems	104
3.3	Expressions for the Motion in Terms of Moving Reference Frames	110
3.4	Motion Relative to the Rotating Earth	112
3.5	Motion of a Free Particle Relative to the Rotating Earth	114
3.6	Foucault's Pendulum	116
	Problems	119
	Suggested References	121
Cha	pter 4 Rigid Body Dynamics	122
4.1	Kinematics of a Rigid Body	123
4.2	The Linear and Angular Momentum of a Rigid Body	126
4.3	Translation Theorem for the Angular Momentum	130
4.4	The Kinetic Energy of a Rigid Body	132
4.5	Principal Axes	134
4.6	The Equations of Motion for a Rigid Body	137
4.7	Euler's Equations of Motion	138
4.8	Euler's Angles	140
4.9	Moment-Free Inertially Symmetric Body	143
4.10	General Case of a Moment-Free Body	147
4.11	Motion of a Symmetric Top	149
	The Lagrangian Equations for Quasi-Coordinates	157
	The Equations of Motion Referred to an Arbitrary System of Axes	160
	The Rolling of a Coin	162
	Problems	164
	Suggested References	169
Cha	pter 5 Behavior of Dynamical Systems. Geometric Theory	170
	-	
5.1 5.2	Fundamental Concepts Motion of Single-Degree-of-Freedom Autonomous Systems about	171
	Equilibrium Points	178

Contents		xiii
5.3	Conservative Systems. Motion in the Large	189
5.4	The Index of Poincaré	195
5.5	Limit Cycles of Poincaré	198
	Problems	206
	Suggested References	208
Cha	apter 6 Stability of Multi-Degree-of-Freedom Autonomous Systems	209
61	Canaral Lingar Systams	210

	Librins	200
	Suggested References	208
Cha	pter 6 Stability of Multi-Degree-of-Freedom Autonomous Systems	209
6.1	General Linear Systems	210
6.2	Linear Autonomous Systems	217
6.3	Stability of Linear Autonomous Systems. Routh-Hurwitz	
	Criterion	222
6.4	The Variational Equations	225
6.5	Theorem on the First-Approximation Stability	226
6.6	Variation from Canonical Systems. Constant Coefficients	229
6.7	The Liapunov Direct Method	231
6.8	Geometric Interpretation of the Liapunov Direct Method	239
6.9	Stability of Canonical Systems	243
6.10	Stability in the Presence of Gyroscopic and Dissipative Forces	252
6.11	Construction of Liapunov Functions for Linear Autonomous Systems	258
	Problems	260
	Suggested References	262
	•	
Cha	pter 7 Nonautonomous Systems	263
7.1	Linear Systems with Periodic Coefficients. Floquet's Theory	264
7.2	Stability of Variational Equations with Periodic Coefficients	271
7.3	Orbital Stability	272
7.4	Variation from Canonical Systems. Periodic Coefficients	273 -
7.5	Second-Order Systems with Periodic Coefficients	277
7.6	Hill's Infinite Determinant	280
7.7	Mathieu's Equation	282
7.8	The Liapunov Direct Method	288
	Suggested References	292
Cho	opter 8 Analytical Solutions by Perturbation Techniques	202
Спа	opter 8 Analytical Solutions by Perturbation Techniques	293
8.1	The Fundamental Perturbation Technique	294
8.2	Secular Terms	297
8.3	Lindstedt's Method	299
8.4	The Krylov-Bogoliubov-Mitropolsky (KBM) Method	302
8.5	A Perturbation Technique Based on Hill's Determinants	309
8.6	Periodic Solutions of Nonautonomous Systems. Duffing's Equation	313
8.7	The Method of Averaging	322
	Problems	327

0.1	The Fundamental Perturbation Technique	294
8.2	Secular Terms	297
8.3	Lindstedt's Method	299
8.4	The Krylov-Bogoliubov-Mitropolsky (KBM) Method	302
8.5	A Perturbation Technique Based on Hill's Determinants	309
8.6	Periodic Solutions of Nonautonomous Systems. Duffing's Equation	313
8.7	The Method of Averaging	322
	Problems	327
	Suggested References	328

xiv Contents

Chap	oter 9 Transformation Theory. The Hamilton-Jacobi Equation	329
9.1	The Principle of Least Action	330
9.2	Contact Transformations	334
9.3	Further Extensions of the Concept of Contact Transformations	339
9.4	Integral Invariants	346
9.5	The Lagrange and Poisson Brackets	349
9.6	Infinitesimal Contact Transformations	352
9.7	The Hamilton-Jacobi Equation	355
9.8	Separable Systems	361
9.9	Action and Angle Variables	365
9.10	Perturbation Theory	372
	Problems	378
	Suggested References	380
Chaj	pter 10 The Gyroscope: Theory and Applications	381
10.1	Oscillations of a Symmetric Gyroscope	382
10.2	v · ·	386
10.3	Effect of Rotor Shaft Flexibility on the Frequency of Oscillation of	
	a Free Gyroscope	389
10.4	• •	393
10.5	· -	398
10.6	Rate and Integrating Gyroscopes	403
	Problems	406
	Suggested References	407
Chaj	pter 11 Problems in Celestial Mechanics	408
11.1	Kepler's Equation. Orbit Determination	409
11.2	The Many-Body Problem	413
11.3	The Three-Body Problem	416
11.4	The Restricted Three-Body Problem	420
11.5	Stability of Motion Near the Lagrangian Points	425
11.6	The Equations of Relative Motion. Disturbing Function	428
11.7	Gravitational Potential and Torques for an Arbitrary Body	430
11.8	Precession and Nutation of the Earth's Polar Axis	438
11.9	Variation of the Orbital Elements	442
11.1	0 The Resolution of the Disturbing Function	447
	Problems	450
	Suggested References	451
Cha	pter 12 Problems in Spacecraft Dynamics	452
12.1		
	Impulse	453

Contents	xv

12.2	Perturbations of a Satellite Orbit in the Gravitational Field of an	
	Oblate Planet	457
12.3	The Effect of Atmospheric Drag on Satellite Orbits	463
12.4	The Attitude Motion of Orbiting Satellites. General Considerations	466
12.5	The Attitude Stability of Earth-Pointing Satellites	470
12.6	The Attitude Stability of Spinning Symmetrical Satellites	475
12.7	Variable-Mass Systems	483
12.8	Rocket Dynamics	487
	Problems	491
	Suggested References	492
••	endix A Dyadics endix B Elements of Topology and Modern Analysis	494 497
B.1	Sets and Functions	498
B.2	Metric Spaces	501
B.3	Topological Spaces	504
	Suggested References	506
Nan	ne Index	507
Subj	ject Index	511