CONTENTS

Preface	ix
Chapter 1. Survey of the Elementary Principles	1
1–1 Mechanics of a particle	1
1-2 Mechanics of a system of particles	4
1-3 Constraints	10
1–4 D'Alembert's principle and Lagrange's equations	14
1-5 Velocity-dependent potentials and the dissipation function	18
1-6 Simple applications of the Lagrangian formulation	22
Chapter 2. Variational Principles and Lagrange's Equations	30
2–1 Hamilton's principle	30
2–2 Some techniques of the calculus of variations	31
2–3 Derivation of Lagrange's equations from Hamilton's principle	36
2-4 Extension of Hamilton's principle to nonconservative and non-	
holonomic systems	38
2–5 Advantages of a variational principle formulation	44
2–6 Conservation theorems and symmetry properties	47
Chapter 3. The Two-Body Central Force Problem	58
3–1 Reduction to the equivalent one-body problem	58
3–2 The equations of motion and first integrals	59
3-3 The equivalent one-dimensional problem, and classification of orbits .	63
3–4 The virial theorem	69
3-5 The differential equation for the orbit and integrable power-law	
potentials	71
3-6 The Kepler problem: inverse square law of force	76
3-7 Scattering in a central force field	81
$3-8$ Transformation of the scattering problem to laboratory conditions \cdot .	85
Chapter 4. The Kinematics of Rigid Body Motion	93
4-1 The independent coordinates of a rigid body	93
4-2 Orthogonal transformations	97
4-3 Formal properties of the transformation matrix	101
4-4 The Eulerian angles	107
4-5 The Cayley-Klein parameters	109
4-6 Euler's theorem on the motion of a rigid body	118
4-7 Infinitesimal rotations	124
4-8 Rate of change of a vector	132
4–9 The Coriolis force	135
v	

CONTENTS

Chapter 5. The Rigid Body Equations of Motion	143
5–1 Angular momentum and kinetic energy of motion about a point	143
5–2 Tensors and dyadics	146
5–3 The inertia tensor and the moment of inertia	149
5–4 The eigenvalues of the inertia tensor and the principal axis trans-	110
formation	151
5-5 Methods of solving rigid body problems and the Euler equations	
of motion \ldots	156
5-6 Force-free motion of a rigid body	159
5-7 The heavy symmetrical top with one point fixed	164
5-8 Precession of charged bodies in a magnetic field	176
CHAPTER 6. SPECIAL RELATIVITY IN CLASSICAL MECHANICS	185
6–1 The basic program of special relativity	185
6-2 The Lorentz transformation	187
6–3 Covariant four-dimensional formulations	194
6–4 The force and energy equations in relativistic mechanics	199
6–5 The Lagrangian formulation of relativistic mechanics	205
6–6 Covariant Lagrangian formulations	200
	201
Chapter 7. The Hamilton Equations of Motion	215
7-1 Legendre transformations and the Hamilton equations of motion	215
7-2 Cyclic coordinates and Routh's procedure	218
7-3 Conservation theorems and the physical significance of the Hamil-	
tonian	220
7-4 Derivation from a variational principle	225
7–5 The principle of Least Action \ldots \ldots \ldots \ldots \ldots \ldots	228
CHAPTER 8. CANONICAL TRANSFORMATIONS	237
8–1 The equations of canonical transformation	237
	244
8-2 Examples of canonical transformations	241 247
8–5 The integral invariants of Foncare	250
8–5 The equations of motion in Poisson bracket notation	255
8–5 The equations of motion in Poisson bracket notation	
	258
symmetry properties	263
	205 266
8–8 Liouville's theorem	200
Chapter 9. Hamilton-Jacobi Theory	273
9–1 The Hamilton-Jacobi equation for Hamilton's principal function . $.9-2$ The harmonic oscillator problem as an example of the Hamilton-	273
Jacobi method	277

CONTENTS

9-3 The Hamilton-Jacobi equation for Hamilton's characteristic func-	
$\operatorname{tion} \ldots \ldots$	279
9-4 Separation of variables in the Hamilton-Jacobi equation	284
9–5 Action-angle variables	288
9–6 Further properties of action-angle variables	294
9–7 The Kepler problem in action-angle variables	299
9–8 Hamilton-Jacobi theory, geometrical optics, and wave mechanics . $% \left[{\left[{{{\rm{A}}} \right]_{{\rm{A}}}} \right]_{{\rm{A}}}} \right]$.	307
CHAPTER 10. SMALL OSCILLATIONS	3 18
10–1 Formulation of the problem	318
10-2 The eigenvalue equation and the principal axis transformation	321
10–3 Frequencies of free vibration, and normal coordinates	329
10–4 Free vibrations of a linear triatomic molecule	333
10–5 Forced vibrations and the effect of dissipative forces	338
	000
Chapter 11. Introduction to the Lagrangian and Hamiltonian Formulations for Continuous	
Systems and Fields	347
11–1 The transition from a discrete to a continuous system	347
11-2 The Lagrangian formulation for continuous systems	350
11-3 Sound vibrations in gases as an example of the Lagrangian formula-	
tion	355
11–4 The Hamiltonian formulation for continuous systems	359
11–5 Description of fields by variational principles	364
	001
Bibliography	373
Index of Symbols	377
Index	385