CONTENTS

PREFACE TO	THE	FI	RS.	ΓE	DI'	гю	N		٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	v
PREFACE TO	THE	SE	CO	ND	E	רום	10	N	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	vii
INTRODUCTI	ON			•												•			•								1

CHAPTER 1

NATURAL OSCILLATIONS IN SYSTEMS CLOSE TO LINEAR ONES

§	1.	DEVELOPMENT OF ASYMPTOTIC SOLUTIONS	•	39
§	2.	CONSERVATIVE SYSTEMS CLOSE TO LINEAR ONES	•	55
§	3.	CASE OF NON-LINEAR FRICTION	•	70
ş	4.	AUTONOMOUS OSCILLATORY SYSTEMS	•	80
§	5.	STATIONARY AMPLITUDES AND THEIR STABILITY	•	91
§	б.	DEVELOPMENT OF STATIONARY SOLUTIONS		104
§	7.	EQUIVALENT LINEARIZATION OF NON-LINEAR OSCILLATING SYSTEMS	•	115
ş	8.	NON-LINEAR OSCILLATING SYSTEMS WITH SLOWLY VARYING PARAMETERS		133

CHAPTER 2

METHOD OF THE PHASE PLANE

§ 9.	TRAJECTORIES IN THE PHASE PLANE.	SINGU	LAR P	OINTS				•		•	144
§ 10.	LIENARD'S METHOD		• •	• •			•		•	•	1 6 6
§ 11.	RELAXATION OSCILLATION SYSTEMS	· • •	• •		•••			•	•		181
§ 12.	METHOD OF A. A. DORODNITSIN FOR	VAN-DE	R-POL	EQUA	TIOI	۷.					186

CHAPTER 3

INFLUENCE OF EXTERNAL PERIODIC FORCES

§ 13.	ASYMPTOTIC EXPANSIONS IN THE NON-RESONANCE CASE	196
§ 14.	RESONANCE CASES	216
§ 15.	THE INFLUENEC OF SINUSOIDAL FORCE ON A NON-LINEAR VIBRATOR	236
§ 16.	THE INFLUENCE OF A SINUSOIDAL FORCE ON A NON-LINEAR SYSTEM WITH	
	A CHARACTERISTIC COMPOSED OF RECTILINEAR SEGMENTS	254

ii

§17.	PARAMETRIC RESONANCE	267
§ 18.	EFFECT OF PERIODIC FORCES ON A RELAXATION SYSTEM	284
§ 19.	EFFECT OF PERIODIC FORCES ON NON-LINEAR SYSTEMS WITH SLOWLY .	
	VARYING PARAMETERS	298

CHAPTER 4

MONOFREQUENCY OSCILLATIONS IN NON-LINEAR SYSTEMS WITH SEVERAL DEGREES OF FREEDOM

§ 20.	NATURAL MONOFREQUENCY OSCILLATIONS IN SYSTEMS WITH SEVERAL DEGREES OF FREEDOM	318
§ 21.	NATURAL MONOFREQUENCY OSCILLATIONS IN SYSTEMS WITH SEVERAL DEGREES OF FREEDOM, REPRESENTABLE BY A SYSTEM OF DIFFERENTIAL EQUATIONS OF THE SECOND ORDER	334
§ 22.	EFFECT OF EXTERNAL PERIODIC FORCES ON MONOFREQUENCY OSCILLATIONS IN SYSTEMS WITH SEVERAL DEGREES OF FREEDOM	
§ 23.	ANALYSIS OF MONOFREQUENCY OSCILLATIONS IN NON-LINEAR SYSTEMS WITH SEVERAL DEGREES OF FREEDOM WHEN THERE ARE SLOWLY VARYING PARAMETERS	366

CHAPTER 5

THE METHOD OF AVERAGING

§ 24.	EQUATIONS OF THE FIRST	AND	HIGHER	ORDER	APPR	OXIN	ATIO	NS IN	THE	
	METHOD OF AVERAGING				•••				• •	387
§ 25.	THE CASE OF THE RAPIDLY	ROT	ATING PH	HASE .				•••		412

CHAPTER 6

FOUNDATION OF ASYMPTOTIC METHODS

§ 26.	FOUNDATION OF THE METHOD OF AVERAGING	428
§ 27.	TRANSFORMATION OF THE BASIC SYSTEM OF EQUATIONS	435
-	SOME PROPERTIES OF THE SOLUTIONS OF THE TRANSFORMED EQUATIONS	
	IN THE NEIGHBOURHOOD OF EQUILIBRIUM POINTS AND CLOSED	
	ORBITS	465
§ 29.	CORRESPONDENCE BETWEEN EXACT AND APPROXIMATE SOLUTIONS OF THE	
	FUNDAMENTAL EQUATION IN AN INFINITE INTERVAL	497
§ 30.	PERIODIC AND ALMOST PERIODIC SOLUTIONS	506
BIBLIC	OGRAPHY	535