	3	

月

3.60

P ...

.

39

1.	非線型微分方程式の種々相,単独1階方程式	1
1. 1	1 マルサスの法則(線型)	1
1.2	2 特殊な非線型の場合	3
1.3	3 初期値問題の解が一意でない場合	7
1.4	4 成長と飽和の現象を記述する典型的な方程式	9
1. 5	5 解の爆発と閾値(交配の影響を考えた個体数増加)	13
2.	微分方程式系の基本定理	18
2. 1	l ペアノの存在定理	18
2. 1	L 延長可能性の定理	21
2.3	3 解の一意性	24
2.4	4 初期値問題の解の非負性	25
2.5	5 初期値問題の解の漸近挙動についての注意(自律系)····································	26
2.6	2 次元自律系 (I) ···································	28
2.7	7 2次元自律系 (Ⅱ)	33
2.8	3 ベンディクソンの定理	38
2.9	3 ポアンカレの指数と特異点·······	41
2. 1	10 除外された場合について(ポアンカレの問題)	53
3.	2種の生物個体群の微分方程式	61
3. 1	l 同一の食物を争う 2 種の生物個体群	61
3.2	2 えじきと捕食者の関係	65
3.3	3 2種が共存する場合のその他の例	74

4. n	種の生物個体群が共存する場合の微分方程式系	81
4.1	同じ食物を争う n 種の生物個体群	81
4.2	当量仮説	83
4.3	偶数個の種の個体群からなる群集	88
4.4	奇数個の種の個体群からなる群集	97
4.5	一般化と特別な3種の例	106
4.6	一般論, コンサーバティブな群集とディシパティブな群集…	121
4.7	化学反応系の微分方程式系	134
5. 非	線型で拡散をともなう現象の微分方程式系	138
5.1	弱い非線型と拡散の例	138
5.2	拡散方程式の基礎	140
5.3	スカラーの非線型拡散方程式の局所解と比較定理	142
5.4	初期値問題の解の大局的存在と有界性	145
5.5	非線型拡散方程式の初期値問題の解の漸近挙動	159
文	献	169
宏	月[171