			ä
3€			

CONTENTS

Edit	cor's	Foreword	xiii
Pre	Eace		xv
Part		HOMOGENEOUS BOUNDARY VALUE PROBLEMS AND SPECIAL FUNCTIONS	
1.	THE	PARTIAL DIFFERENTIAL EQUATIONS	
	OF M	ATHEMATICAL PHYSICS	1
	1.1	Introduction	1
	1.2	Heat Conduction and Diffusion	2
	1.3	Quantum Mechanics	4
	1.4	Waves on Strings and Membranes	5
	1.5	Hydrodynamics and Aerodynamics	7
	1.6	Acoustic Waves in a Compressible Fluid	9
	1.7	Irrotational Flow in an Incompressible Fluid	11
	1.8	Electrodynamics	14
		a) Time Independent Phenomena	15
		b) Vacuum Equations	18
		c) General Case	18
		Summary	21
	Prob	lems	23
2.		RATION OF VARIABLES AND ORDINARY	
		ERENTIAL EQUATIONS	28
		Introduction	28
		Separation of Variables	29
		Rectangular Coordinates (x,y,z)	30
		Cylindrical Coordinates (r, θ, z)	32
	2.5	Spherical Coordinates (r, θ, ϕ)	34
	2.6	Series Solutions of Ordinary Differential	
		Equations: Preliminaries	38
	2.7	Expansion About a Regular Singular Point	43
		Sturm Liouville Eigenvalue Problem	49
		Fourier Series and Integrals	58
	2. 10	Numerical Solution of Ordinary	102075.880
	08_300M 1275A 1275A	Differential Equations	61
	Prob.	lems	67

viii CONTENTS

3.	SPHE	RICAL HARMONICS AND APPLICATIONS	74
	3.1	Introduction	74
	3.2	Series Solution of Legendre's Equation -	
	FXX	Legendre Polynomials	75
	3.3	Properties of Legendre Polynomials	81
		The Second Solution Q(x) of	
		Legendre's Equation	88
	3.5	Associated Legendre Polynomials	92
	3.6	Spherical Harmonics	96
	3.7	The Spherical Harmonics Addition Theorem	99
		Multipole Expansions	103
	3.9	Laplace's Equation in Spherical Coordinates	108
		1) Interior Problem	110
		2) Exterior Problem	112
		3) Region Between Two Spheres	112
	3.10	Conducting Sphere in a Uniform External	
		Electric Field	113
	3.11	Flow of an Incompressible Fluid Around	
		a Spherical Obstacle	115
	Prob	1ems	118
4.	BECCI	EL FUNCTIONS AND APPLICATIONS	122
4.		Introduction	122
	5 5 5-20	Series Solutions of Bessel's Equation;	1.2.2
	7. 2	Bessel Functions	123
	4.3	Neumann Functions	126
	757. W. 1903	Small Argument and Asymptotic Expansions	132
			134
		Laplace's Equation in Cylindrical Coordinates	135
		Interior of a Cylinder of Finite Length	136
		The Sturm Liouville Eigenvalue Problem	55070 (T)
	54.50 FD	and Expansion Theorem	139
	4.9	Interior of a Cylinder of Finite Length -	
341		Continued	141
	4.10	Exterior of an Infinitely Long Cylinder	144
		Cylinder in an External Field	145
		Space Between Two Infinite Planes	147
		Fourier Bessel Transforms	149
		Space Between Two Infinite Planes - Continued	151
	Prob		152
_			15/
5.	2.00 7.6227	AL MODE EIGENVALUE PROBLEMS	154
	Maria 2021 - 20	Introduction	154
	5. 2	Reduction of the Diffusion Equation and Wave	155
	5 2	Equation to an Eigenvalue Problem	161
		The Vibrating String	162
	J. 4	The Vibrating Drumhead	102

CONTENTS

	5.5	Heat Conduction in a Cylinder of	
		Finite Length	166
	5.6	Particle in a Cylindrical Box	
		(Quantum Mechanics)	168
	5.7	Normal Modes of an Acoustic Resonant Cavity	168
		Acoustic Wave Guide	170
	Prob		174
_	a natana	STOAT BEGOET BERTONTONO AND ADDITOAMTONO	177
6.		RICAL BESSEL FUNCTIONS AND APPLICATIONS	177
	= 32	Introduction	177
	6. 2	Formulas for Spherical Bessel Functions in	170
	<i>c</i> 0	Terms of Elementary Functions	178
		Eigenvalue Problem and Expansion Theorem	184
	6.4	Expansion of Plane and Spherical Waves in	107
		Spherical Coordinates	187
		The Emission of Spherical Waves	192
		Scattering of Waves by a Sphere	197
	Prob.	Lems	204
Part	: I S	SUMMARY OF PART I	207
	DCC 199929 76		
Part		INHOMOGENEOUS PROBLEMS, GREEN'S FUNCTIONS,	
	1	AND INTEGRAL EQUATIONS	
7.	DIEL	ECTRIC AND MAGNETIC MEDIA	218
	7.1	Introduction	218
	7.2	Macroscopic Electrostatics in the	
		Presence of Dielectrics	219
	7.3	Boundary Value Problems in Dielectrics	229
		1) Free Charge Distribution ρ_F Embedded in an Infinite Uniform Dielectric with a Constant	
		Infinite Uniform Dielectric with a Constant	
		Dielectric Constant &	229
		2) Point Charge in Front of a Semi-infinite	
		Dielectric	230
		3) Dielectric Sphere in a Uniform External	
		Electric Field	233
	7.4	Magnetostatics and the Multipole Expansion	
		for the Vector Potential	235
	7.5	Magnetic Media	241
	7.6	Boundary Value Problems in Magnetic Media	247
		1) Uniformly Magnetized Sphere, M Given	247
		2) Magnetic Sphere in a Uniform External	
		Magnetic Field	250
		3) Long Straight Wire Carrying Current I	
		Parallel to a Semi-infinite Slab of	
		Material of Permeability µ	253
	Prob		255

X COM....

8.	GREEN	'S FUNCTIONS	258
	8.1	Introduction	258
	8.2	Ordinary Differential Equations	259
		General Theory, Various Boundary Conditions	260
		1) u(a) and u(b) Given	261
		2) $u(a)$ and $du(x)/dx$ Given	261
		3) $Au(a) + Bu'(a) = X Given and$	
		Cu(b) + Du'(b) = Y Given	262
	8.4	The Bowed Stretched String	265
		Expansion of Green's Function in Eigenfunctions	269
		Poisson's Equation	272
		a) $\psi(\vec{r}')$ Given on S	273
		b) $\partial \psi(\vec{r}')/\partial n'$ Given on S	274
	8.7	Poisson's Equation for All Space	276
		Electrostatics with Boundary Conditions on	
		Surfaces at Finite Distances - The Image Method	276
	8.9	Expansion of the Green's Function for the	
	202000000000000000000000000000000000000	Interior of a Sphere in Series	279
	8.10	The Helmholtz Equation - The Forced Drumhead	283
		Eigenfunction Expansion of Green's Function	
		for the Helmholtz Equation	289
	8.12	The Helmholtz Equation for Infinite Regions,	
		Radiation, and the Wave Equation;	
		Sinusoidal Time Dependence	291
	8.13	General Time Dependence	295
		The Wave Equation	299
		The Wave Equation for All Space, No	
	-,	Boundaries at Finite Distances	304
	8.16	Field Due to a Point Source	311
		1) Point Source Moving with Constant	
		Velocity, v < c	314
		2) Point Source Moving with Constant	
		Velocity, v>c	315
	8. 17	The Diffusion Equation	319
		The Diffusion Equation for All Space, No	
		Boundaries at Finite Distances	322
	Prob		327
^	Tame	OD AT TOUT ONG	335
9.		GRAL EQUATIONS	335
	**************************************	Introduction	336
		Quantum Theory of Scattering	341
	9.3	Types of Integral Equations	341
		1) First Kind	341
		2) Second Kind	341
		3) Volterra	341
		4) Eigenvalue Problem	JTL

CONTENTS

9.4 Integral Equations with Separable Kernels	342
9.5 Convolution Integral Equations	347
' 9.6 Iteration-Liouville Neumann Series	348
9.7 Numerical Solution	351
9.8 Fredholm's Formulas	356
9.9 Conditions for Validity of Fredholm's Formula	s 363
9.10 Hilbert Schmidt Theory	368
Problems	375
Part III COMPLEX VARIABLE TECHNIQUES	
10. COMPLEX VARIABLES; BASIC THEORY	383
10.1 Introduction	383
10.2 Analytic Functions; The Cauchy-Riemann	
Equations	385
10.3 Power Series	394
10.4 Multivalued Functions; Cuts; Riemann Sheets	402
10.5 Contour Integrals; Cauchy's Theorem	417
10.6 Cauchy's Integral Formula	426
10.7 Taylor and Laurent Expansions	428
10.8 Analytic Continuation	435
Problems	443
11. EVALUATION OF INTEGRALS	448
11.1 Introduction	448
11.2 The Residue Theorem	448
11.3 Rational Functions (-∞,∞)	451
11.4 Exponential Factors; Jordan's Lemma	453
11.5 Integrals on the Range (0,∞)	459
11.6 Angular Integrals	462
11.7 Transforming the Contour	464
11.8 Partial Fraction and Product Expansions	466
Problems	473
12. DISPERSION RELATIONS	475
12.1 Introduction	475
12.2 Plemelj Formulas; Dirac's Formula	476
12.3 Discontinuity Problem	479
12.4 Dispersion Relations; Spectral Representation	s 481
12.5 Examples	493
12.6 Integral Equations with Cauchy Kernels	499
Problems 1	506
13. SPECIAL FUNCTIONS	507
13.1 Introduction	507
13.2 The Gamma Function	508
13.3 Asymptotic Expansions; Stirling's Formula	513
13.4 The Hypergeometric Function	519
13.5 Legendre Functions	533
	77-0

xii CONTENTS

	Bessel Functions Asymptotic Expansions for Bessel Functions	541 552
Prob1e		561
14. INTE	GRAL TRANSFORMS IN THE COMPLEX PLANE	564
14.1	Introduction	564
14.2	The Calculation of Green's Functions by	
	Fourier Transform Methods	566
	a) The Helmholtz Equation	566
	b) The Wave Equation	570
	c) The Klein Gordon Equation	573
14.3	One-Sided Fourier Transforms;	
	Laplace Transforms	581
14.4	Linear Differential Equations with Constant	
	Coefficients	588
14.5	Integral Equations of Convolution Type	590
	Mellin Transforms	590
Table 1 at 1 a	Partial Differential Equations	592
	The Wiener-Hopf Method	596
	1) Potential Given on Semi-Infinite Plate	597
	2) Diffraction by a Knife Edge	604
Prob1e		618
Bibliogra	phy	621
Index		625