- 表

CONTENTS

30	PREFACE	vii
CHAPTER 1	INTRODUCTION	1
	1.1 Particle on a One-Dimensional Lattice1.2 Representations of the Discrete TranslationOperators	2 4
	1.3 Physical Consequences of Translational Symmetry 1.4 The Representation Functions and Fourier	6
	Analysis 1.5 Symmetry Groups of Physics	8 9
CHAPTER 2	BASIC GROUP THEORY	12
	2.1 Basic Definitions and Simple Examples 2.2 Further Examples, Subgroups 2.3 The Reservencement Lemma and the Symmetric	12 14
	2.3 The Rearrangement Lemma and the Symmetric (Permutation) Group	16
	2.4 Classes and Invariant Subgroups	19
	2.5 Cosets and Factor (Quotient) Groups	21
	2.6 Homomorphisms	23
	2.7 Direct Products	24
	Problems	25
CHAPTER 3	GROUP REPRESENTATIONS	27
	3.1 Representations	27
	3.2 Irreducible, Inequivalent Representations	32
	3.3 Unitary Representations	35
	3.4 Schur's Lemmas	37
DK	3.5 Orthonormality and Completeness Relations of	20
	Irreducible Representation Matrices 3.6 Orthonormality and Completeness Relations of	39
	Irreducible Characters	42
	3.7 The Regular Representation	45
	3.8 Direct Product Representations, Clebsch-Gordan	10
	Coefficients	48
	Problems	52
CHAPTER 4	GENERAL PROPERTIES OF IRREDUCIBLE VECTORS AND OPERATORS	54
	4.1 Irreducible Basis Vectors	54

	4.2 The Reduction of Vectors—Projection Operators	<i>E C</i>
	for Irreducible Components 4.2 Irreducible Operators and the Wigner Felerat	56
	4.3 Irreducible Operators and the Wigner-Eckart Theorem	59
	Problems	62
CHAPTER 5	REPRESENTATIONS OF THE SYMMETRIC	
	GROUPS	64
	5.1 One-Dimensional Representations	65
	5.2 Partitions and Young Diagrams	65
	5.3 Symmetrizers and Anti-Symmetrizers of Young Tableaux	67
		68
	5.4 Irreducible Representations of S _n 5.5 Symmetry Classes of Tensors	70
	Problems	78
CHAPTER 6	ONE-DIMENSIONAL CONTINUOUS GROUPS	80
	6:1 The Rotation Group SO(2)	81
	6.2 The Generator of SO(2)	83
	6.3 Irreducible Representations of SO(2)	84
	6.4 Invariant Integration Measure, Orthonormality	
	and Completeness Relations	86
	6.5 Multi-Valued Representations	88
	6.6 Continuous Translational Group in One	
	Dimension	89
	6.7 Conjugate Basis Vectors	91
	Problems	93
CHAPTER 7	ROTATIONS IN THREE-DIMENSIONAL	
	SPACE—THE GROUP SO(3)	94
	7.1 Description of the Group SO(3)	94
	7.1.1 The Angle-and-Axis Parameterization	96
	7.1.2 The Euler Angles	97
	7.2 One Parameter Subgroups, Generators, and the	
	Lie Algebra	99
	7.3 Irreducible Representations of the SO(3)	
	Lie Algebra	102
	7.4 Properties of the Rotational Matrices $D^{j}(\alpha, \beta, \gamma)$	107
	7.5 Application to Particle in a Central Potential	109
	7.5.1 Characterization of States	110
	7.5.2 Asymptotic Plane Wave States	111
	7.5.3 Partial Wave Decomposition	111
	7.5.4 Summary	112
	7.6 Transformation Properties of Wave Functions	112
	and Operators 7.7 Direct Product Perresentations and Their	112
	7.7 Direct Product Representations and Their	117
	Reduction	11/

	7.8 Irreducible Tensors and the Wigner-Eckart Theorem Problems	122 123
CHAPTER 8	THE GROUP SU(2) AND MORE ABOUT SO(3)	125
	 8.1 The Relationship between SO(3) and SU(2) 8.2 Invariant Integration 8.3 Orthonormality and Completeness Relations 	125 129
	of D^j	133
	8.4 Projection Operators and Their Physical Applications	135
	8.4.1 Single Particle State with Spin	136
	8.4.2 Two Particle States with Spin	138
	8.4.3 Partial Wave Expansion for Two	
	Particle Scattering with Spin	140
	8.5 Differential Equations Satisfied by the	
	D^{j} -Functions	141
	8.6 Group Theoretical Interpretation of Spherical	
	Harmonics	143
	8.6.1 Transformation under Rotation	144
	8.6.2 Addition Theorem	145
	8.6.3 Decomposition of Products of Y_{lm}	
	With the Same Arguments	145
	8.6.4 Recursion Formulas	145
	8.6.5 Symmetry in m	146
	8.6.6 Orthonormality and Completeness	146
	8.6.7 Summary Remarks	146
	8.7 Multipole Radiation of the Electromagnetic Field Problems	147 150
CHAPTER 9	EUCLIDEAN GROUPS IN TWO- AND	1 = 0
	THREE-DIMENSIONAL SPACE	152
	9.1 The Euclidean Group in Two-Dimensional Space E ₂	154
	9.2 Unitary Irreducible Representations of E ₂ —the Angular-Momentum Basis	156
	9.3 The Induced Representation Method and the Plane-Wave Basis	160
	9.4 Differential Equations, Recursion Formulas,	163
	and Addition Theorem of the Bessel Function 9.5 Group Contraction—SO(3) and E ₂	165
%	9.5 The Euclidean Group in Three Dimensions: E ₃	166
	9.7 Unitary Irreducible Representations of E ₃ by the Induced Representation Method	168
	9.8 Angular Momentum Basis and the Spherical	100
	Bessel Function	170
	Problems	171

xvi Contents

CHAPTER 10	THE LORENTZ AND POINCARÉ GROUPS, AND SPACE-TIME SYMMETRIES 173				
	10.1 The Lorentz and Poincaré Groups	173			
	10.1.1 Homogeneous Lorentz Transformations	174			
	10.1.2 The Proper Lorentz Group 10.1.3 Decomposition of Lorentz	177			
	Transformations 10.1.4 Relation of the Proper Lorentz	179			
32	Group to SL(2) 10.1.5 Four-Dimensional Translations and	180			
	the Poincaré Group	181			
	10.2 Generators and the Lie Algebra	182			
	10.3 Irreducible Representations of the Proper	405			
	Lorentz Group	187			
	10.3.1 Equivalence of the Lie Algebra to SU(2) × SU(2)	107			
	10.3.2 Finite Dimensional Representations	187			
	10.3.2 Unitary Representations	188 189			
	10.3.3 Unitary Irreducible Representations of the	107			
	Poincaré Group	191			
	10.4.1 Null Vector Case $(P_{\mu} = 0)$	192			
	10.4.2 Time-Like Vector Case (c ₁ > 0)	192			
	10.4.3 The Second Casimir Operator	195			
	10.4.4 Light-Like Case $(c_1 = \hat{0})$	196			
	10.4.5 Space-Like Case (c ₁ < 0)	199			
	10.4.6 Covariant Normalization of Basis				
	States and Integration Measure	200			
	10.5 Relation Between Representations of the				
	Lorentz and Poincaré Groups—Relativistic				
	Wave Functions, Fields, and Wave Equations	202			
	10.5.1 Wave Functions and Field Operators	202			
	10.5.2 Relativistic Wave Equations and the				
	Plane Wave Expansion	203			
	10.5.3 The Lorentz-Poincaré Connection	206			
	10.5.4 "Deriving" Relativistic Wave	200			
	Equations	208			
	Problems	210			
CHAPTER 11	SPACE INVERSION INVARIANCE				
	11.1 Space Inversion in Two-Dimensional Euclidean	212			
	Space 11.1.1 The Group O(2)	213			
	11.1.2 Irreducible Representations of O(2)	215			
	11.1.2 The Extended Euclidean Group	217			
	\tilde{E}_2 and its Irreducible Representations	218			
	11.2 Space Inversion in Three-Dimensional Euclidean				
	Space	221			
		572			

7.22			
		-	40
1 (ni	en	1.7.

	11.2.1 The Group O(3) and its Irreducible	221
	Representations 11.2.2 The Extended Euclidean Group \tilde{E}_3	221
	and its Irreducible Representations	223
	11.3 Space Inversion in Four-Dimensional	227
	Minkowski Space 11.3.1 The Complete Lorentz Group and its	227
	Irreducible Representations	227
	11.3.2 The Extended Poincaré Group and its	221
	Irreducible Representations 11.4 General Physical Consequences of Space	231
	Inversion	237
	11.4.1 Eigenstates of Angular Momentum and	220
	Parity 11.4.2 Scattering Amplitudes and	238
	Electromagnetic Multipole Transitions	240
	Problems	243
CHAPTER 12	TIME REVERSAL INVARIANCE	245
CHAI ILK IZ	I INTERESTAD IN VARIANCE	2-4-2
	12.1 Preliminary Discussion	245
	12.2 Time Reversal Invariance in Classical Physics 12.3 Problems with Linear Realization of Time	246
	Reversal Transformation	247
N 1200	12.4 The Anti-Unitary Time Reversal Operator	250
	12.5 Irreducible Representations of the Full	251
	Poincaré Group in the Time-Like Case 12.6 Irreducible Representations in the Light-Like	251
	Case $(c_1 = c_2 = 0)$	254
	12.7 Physical Consequences of Time Reversal	
	Invariance	256
	12.7.1 Time Reversal and Angular Momentum Eigenstates	256
	12.7.2 Time-Reversal Symmetry of	
	Transition Amplitudes	257
	12.7.3 Time Reversal Invariance and Perturbation Amplitudes	259
	Problems	261
CHAPTER 13	FINITE-DIMENSIONAL REPRESENTATIONS OF THE CLASSICAL GROUPS	262
	OF THE CLASSICAL GROUPS	
	13.1 GL(m): Fundamental Representations and	263
	The Associated Vector Spaces 13.2 Tensors in $V \times \tilde{V}$, Contraction, and $GL(m)$	203
	Transformations	265
	13.3 Irreducible Representations of GL(m) on the	
	Space of General Tensors	269

xvii

	13.4 Irreducible Representations of Other Classical	
	Linear Groups	277
	13.4.1 Unitary Groups U(m) and	
96 Se	$U(m_+, m)$ 13.4.2 Special Linear Groups SL(m) and	277
	Special Unitary Groups SU(m ₊ , m ₋)	280
	13.4.3 The Real Orthogonal Group $O(m_+, m; R)$ and the Special Real Orthogonal Group $SO(m_+, m; R)$	283
	13.5 Concluding Remarks	289
	Problems	290
APPENDIX I	NOTATIONS AND SYMBOLS	292
	I.1 Summation Convention	292
	I.2 Vectors and Vector Indices	292
	I.3 Matrix Indices	293
APPENDIX II	SUMMARY OF LINEAR VECTOR SPACES	295
	II.1 Linear Vector Space	295
	II.2 Linear Transformations (Operators) on Vector	205
	Spaces II 2 Matrix Depresentation of Lincor Operators	297 299
	II.3 Matrix Representation of Linear OperatorsII.4 Dual Space, Adjoint Operators	301
	II.4 Dual Space, Adjoint Operators II.5 Inner (Scalar) Product and Inner Product Space	302
	II.6 Linear Transformations (Operators) on Inner Product Spaces	304
APPENDIX III	GROUP ALGEBRA AND THE REDUCTION OF	
	REGULAR REPRESENTATION	307
	III.1 Group Algebra	307
	III.2 Left Ideals, Projection Operators	308
¥€	III.3 Idempotents	309
	III.4 Complete Reduction of the Regular	312
	Representation	312
APPENDIX IV	SUPPLEMENTS TO THE THEORY OF SYMMETRIC GROUPS S.	314
APPENDIX V	CLEBSCH-GORDAN COEFFICIENTS AND	
	SPHERICAL HARMONICS	318
APPENDIX VI	ROTATIONAL AND LORENTZ SPINORS	320
APPENDIX VII	UNITARY REPRESENTATIONS OF THE PROPER LORENTZ GROUP	328
APPENDIX VIII	ANTI-LINEAR OPERATORS	331
	ND BIBLIOGRAPHY	335
INDEX		338