

CONTENTS

Forewo	ord		Page V
Chapte	r I. ′	The Steady-State Stokes Equations.	1
	Intr	oduction	1
§ 1.	Some function spaces		1
	1.1.	Notation	1
	1.2	A density theorem	5
	1.3	A trace theorem	9
	1.4	Characterization of the spaces H and V	13
§2.	Exis	tence and uniqueness for the Stokes equations	20
	2.1	Variational formulation of the problem	21
	2.2	The projection theorem	23
	2.3	The unbounded case	29
	2.4	The non-homogeneous Stokes problem	31
	2.5	Regularity results	32
	2.6	Eigenfunctions of the Stokes problem	38
§3.	Disc	retization of the Stokes equations (I)	39
	3.1	Approximation of a normed space	40
	3.2	A general convergence theorem	44
	3.3	Approximation by finite differences	48
§4 .	Disc	retization of the Stokes equations (II)	65
	4.1	Preliminary results	66
	4.2	Finite elements of degree 2 $(n = 2)$	74
	4.3	Finite elements of degree $3 (n = 3)$	99
	4.4	An internal approximation of V	104
	4.5	Nonconforming finite elements	112
§ 5.	Nun	nerical algorithms	138
	5.1	Uzawa algorithm	138
		Arrow—Hurwicz algorithm	142
		Discrete form of these algorithms	145

			rage
§ 6.	Sligh	ntly compressible fluids	147
	6.1	Convergence of u_{ϵ} to u	148
		Asymptotic expansion of u_{ϵ}	151
	6.3	Numerical algorithms	154
Chapte	er II.	The Steady-State Navier—Stokes Equations	157
	Intr	oduction	157
§ 1.	Exis	tence and uniqueness theorems	157
	1.1	Sobolev inequalities and compactness theorems	158
	1.2	The homogeneous Navier-Stokes equations	160
	1.3	The homogeneous Navier-Stokes equations	
		(continued)	168
	1.4	The non-homogeneous Navier—Stokes equations	173
§2.	Disc	rete inequalities and compactness theorems	180
	2.1	Discrete Sobolev inequalities	180
	2.2	A discrete compactness theorem for step functions	187
	2.3	Discrete Sobolev Inequalities for non conforming finite elements	192
	2.4	A discrete compactness theorem for non conforming finite elements	196
§3.	App	roximation of the stationary Navier-Stokes equations	199
	3.1	A general convergence theorem	199
		Applications	205
		Numerical algorithms	218
§4.	Bifu	rcation theory and non-uniqueness results	223
	4.1	The Taylor problem. Preliminary Results	224
		A spectral property of B	234
		Elements of the topological degree theory	242
		The non uniqueness theorem	244
Chapte	r III.	The Evolution Navier-Stokes Equations	247
	Intro	oduction	247

ix

81.	The	linear case	<i>Page</i> 247
S			
		Notations The assistance and uniqueness theorem	248 252
		The existence and uniqueness theorem	880000 895 SWEE
	1000 HAVE #	Proof of the existence in Theorem 1.1	255
		Proof of the continuity and uniqueness	260 264
	1.3	Miscellaneous remarks	204
§2.	Com	pactness theorems	269
	2.1	A preliminary result	270
		A compactness theorem in Banach spaces	271
		A compactness theorem involving fractional	
		derivatives	273
0.0	Tru-in	$t_{\text{on ac and unique ones}}$ theorems ($u < 1$)	278
83.	EXIS	tence and uniqueness theorems $(n \le 4)$.	210
	3.1	An existence theorem in \Re^n $(n \le 4)$	279
	3.2	Proof of Theorem 3.1	283
	3.3	Regularity and uniqueness $(n = 2)$	291
	3.4	About regularity and uniqueness $(n = 3)$	295
	3.5	More regular solutions	299
	3.6	Relations between the problems of existence and	
		uniqueness $(n = 3)$	308
	3.7	Utilization of a special basis	313
	3.8	The special case $f = 0$	318
21	A 1+^	mata man f of axistance by semi-discretization	320
84.	Aite	rnate proof of existence by semi-discretization	Sa Ga
	4.1	Statement of the problem	320
		The approximate solutions	323
		A priori estimates	325
	4.4	Passage to the limit	328
§5.		retization of the Navier-Stokes equations:	
	Gen	eral stability and convergence theorems	331
	5.1	Description of the approximation schemes	332
		Stability of the Schemes 5.1 and 5.2	336
			340

x Contents

02			Page
	5.4	Stability of Scheme 5.4	344
	5.5	A complementary estimate for Scheme 5.2	348
	5.6	Other a priori estimates	349
	5.7	Convergence of the numerical schemes	352
§ 6.	Disc	retization of the Navier-Stokes equations:	
	App	lication of the general results	364
	6.1	Finite Differences (APX1)	365
	6.2	Finite Elements (APX2), (APX3), (APX4)	374
	6.3	Non Conforming finite elements (APX5)	381
	6.4	Numerical algorithms. Approximation of the	∌ű
		pressure	386
87.	Ann	roximation of the Navier-Stokes equations	
8 / •	by the Fractional Step Method		
	7.1	A Scheme with two intermediate steps	397
	7.2	A Scheme with $n + 1$ intermediate steps	409
	7.3	Convergence of the Scheme	417
§8.	App	roximation of the Navier-Stokes equations	
	by t	he artificial compressibility method	426
	8.1	Study of the perturbed problems	427
	8.2	Convergence of the perturbed problems to the	
		Navier-Stokes equations	440
	8.3	Approximation of the perturbed problems	443
	Con	nments	458
	Ref	erences	464
	App	endix (by F. Thomasset)	
		lementation of non-conforming linear finite	
	-	ements	480