	28		
29			

Contents

Preface	V
General Introduction. The User's Guide	1
Introduction	1
1. Mechanism and Description of Chaos. The Finite-Dimensional Case	2
2. Mechanism and Description of Chaos. The Infinite-Dimensional Case	6
3. The Global Attractor. Reduction to Finite Dimension	10
4. Remarks on the Computational Aspect	12
5. The User's Guide	13
CHAPTER I	
General Results and Concepts on Invariant Sets and Attractors	15
Introduction	15
1. Semigroups, Invariant Sets, and Attractors	16
1.1. Semigroups of Operators	16
1.2. Functional Invariant Sets	18
1.3. Absorbing Sets and Attractors	20
1.4. A Remark on the Stability of the Attractors	26
2. Examples in Ordinary Differential Equations	28
2.1. The Pendulum	28
2.2. The Minea System	30
2.3. The Lorenz Model	33
3. Fractal Interpolation and Attractors	35
3.1. The General Framework	35
3.2. The Interpolation Process	36
3.3 Proof of Theorem 3.1	38

CI	HAPTER II	
E	lements of Functional Analysis	4:
	Introduction	4:
1.	Function Spaces	4:
	1.1. Definition of the Spaces. Notations	4
	1.2. Properties of Sobolev Spaces	43
	1.3. Other Sobolev Spaces	41
	1.4. Further Properties of Sobolev Spaces	49
2.	Linear Operators	5:
	2.1. Bilinear Forms and Linear Operators	52
	2.2. "Concrete" Examples of Linear Operators	50
3.	Linear Evolution Equations of the First Order in Time	60
	3.1. Hypotheses	60
	3.2. A Result of Existence and Uniqueness	68
	3.3. Regularity Results	69
	3.4. Time-Dependent Operators	72
4.	Linear Evolution Equations of the Second Order in Time	74
	4.1. The Evolution Problem	74
	4.2. Another Result	7
	4.3. Time-Dependent Operators	78
	HAPTER III	
	ttractors of the Dissipative Evolution Equation of the First Order	
	Time: Reaction-Diffusion Equations. Fluid Mechanics and	
Pa	attern Formation Equations	80
76	Introduction	80
1.	Reaction-Diffusion Equations	83
	1.1. Equations with a Polynomial Nonlinearity	82
	1.2. Equations with an Invariant Region	91
2.	Navier-Stokes Equations $(n = 2)$	102
	2.1. The Equations and Their Mathematical Setting	103
	2.2. Absorbing Sets and Attractors	10′
	2.3. Proof of Theorem 2.1	11
3.	Other Equations in Fluid Mechanics	113
	3.1. Abstract Equation. General Results	113
	3.2. Fluid Driven by Its Boundary	110
	3.3. Magnetohydrodynamics (MHD)	119
£	3.4. Geophysical Flows (Flows on a Manifold)	123
	3.5. Thermohydraulics	129
4.	Some Pattern Formation Equations	137
	4.1. The Kuramoto-Sivashinsky Equation	131
	4.2. The Cahn-Hilliard Equation	147
5.	Semilinear Equations	158
	5.1. The Equations. The Semigroup	158
	5.2. Absorbing Sets and Attractors	163
	5.3. Proof of Theorem 5.2	166
6.	Backward Uniqueness	16'
	6.1. An Abstract Result	168
	6.2. Applications	17:

Contents		
CHAPTER IV		
Attractors of Dissipative Wave Equations	175	
Attractors of Dissipative wave Equations	1/3	
Introduction	175	
1. Linear Equations: Summary and Additional Results	176	
1.1. The General Framework	177	
1.2. Exponential Decay	179	
1.3. Bounded Solutions on the Real Line	182	
2. The Sine-Gordon Equation	184	
2.1. The Equation and Its Mathematical Setting	185	
2.2. Absorbing Sets and Attractors	187	
2.3. Other Boundary Conditions	192	
3. A Nonlinear Wave Equation of Relativistic Quantum Mechanics	198	
3.1. The Equation and Its Mathematical Setting	198	
3.2. Absorbing Sets and Attractors	202	
4. An Abstract Wave Equation	208	
4.1. The Abstract Equation. The Group of Operators	208	
4.2. Absorbing Sets and Attractors	211	
4.3. Examples	216	
4.4. Proof of Theorem 4.1 (Sketch)	220	
5. A Nonlinear Schrödinger Equation	222	
5.1. The Equation and Its Mathematical Setting	223	
5.2. Absorbing Sets and Attractors	226	
6. Regularity of Attractors	230	
6.1. A Preliminary Result	231	
6.2. Example of Partial Regularity	235	
6.3. Example of \mathscr{C}^{∞} Regularity	238	
7. Stability of Attractors	243	
CHAPTER V	240	
Lyapunov Exponents and Dimension of Attractors	249	
	240	
Introduction	249	
1. Linear and Multilinear Algebra	250	
1.1. Exterior Product of Hilbert Spaces	250	
1.2. Multilinear Operators and Exterior Products	254	
1.3. Image of a Ball by a Linear Operator	260	
2. Lyapunov Exponents and Lyapunov Numbers	268	
2.1. Distortion of Volumes Produced by the Semigroup	268	
2.2. Definition of the Lyapunov Exponents and Lyapunov	270	
Numbers	270	
2.3. Evolution of the Volume Element and Its Exponential Decay:	275	
The Abstract Framework	275	
3. Hausdorff and Fractal Dimensions of Attractors	278	
3.1. Hausdorff and Fractal Dimensions	278	
3.2. Covering Lemmas	280	
3.3. The Main Results	281	
3.4. Application to Evolution Equations	290	

CHAPIER VI	
Explicit Bounds on the Number of Degrees of Freedom and the	
Dimension of Attractors of Some Physical Systems	292
Introduction	292
1. The Lorenz Attractor	293
2. Reaction-Diffusion Equations	297
2.1. Equations with a Polynomial Nonlinearity	298
2.2. Equations with an Invariant Region	304
3. Navier-Stokes Equations $(n = 2)$	309
3.1. General Boundary Conditions	310
3.2. Improvements for the Space-Periodic Case	315
4. Other Equations in Fluid Mechanics	324
4.1. The Linearized Equations (The Abstract Framework)	324
4.2. Fluid Driven by Its Boundary	325
4.3. Magnetohydrodynamics	330
4.4. Flows on a Manifold	335
4.5. Thermohydraulics	340
5. Pattern Formation Equations	344
5.1. The Kuramoto-Sivashinsky Equation	345
5.2. The Cahn-Hilliard Equations	351
6. Dissipative Wave Equations	356 357
6.1. The Linearized Equation 6.2. Dimension of the Attractor	360
6.3. Sine-Gordon Equations	363
6.4. Some Lemmas	364
7. A Nonlinear Schrödinger Equation	366
7. 7.1. The Linearized Equation	366
7.1. The Emourized Equation 7.2. Dimension of the Attractor	367
8. Differentiability of the Semigroup	371
o. w. a.	
CHAPTER VII	
Non-Well-Posed Problems, Unstable Manifolds, Lyapunov	
Functions, and Lower Bounds on Dimensions	375
Introduction	375
	200 20 Vo. 102 202
PART A: Non-Well-Posed Problems	376
1. Dissipativity and Well Posedness	37€
1.1. General Definitions	376
1.2. The Class of Problems Studied	377
1.3. The Main Result	381
2. Estimate of Dimension for Non-Well-Posed Problems:	201
Examples in Fluid Dynamics	385
2.1. The Equations and Their Linearization	386
2.2. Estimate of the Dimension of X	387
2.3. The Three-Dimensional Navier-Stokes Equations	389
PART B: Unstable Manifolds, Lyapunov Functions, and	
Lower Bounds on Dimensions	392
3. Stable and Unstable Manifolds	392
3.1. Structure of a Mapping in the Neighborhood of a Fixed Point	393

Contents

	3.2. Application to Attractors	395
	3.3. Unstable Manifold of a Compact Invariant Set	399
4.	The Attractor of a Semigroup with a Lyapunov Function	400
	4.1. A General Result	400
	4.2. Additional Results	402
	4.3. Examples	405
5.	Lower Bounds on Dimensions of Attractors: An Example	406
Cl	HAPTER VIII	¥1
	he Cone and Squeezing Properties. Inertial Manifolds	408
	Introduction	408
1.	The Cone Property	409
	1.1. The Cone Property	409
	1.2. Generalizations	412
	1.3. The Squeezing Property	414
2.	Construction of an Inertial Manifold: Description of the Method	415
	2.1. Inertial Manifolds: The Method of Construction	415
	2.2. The Initial and Prepared Equations	416
	2.3. The Mapping \mathcal{F}	419
3.	Existence of an Inertial Manifold	422
	3.1. The Result of Existence	423
	3.2. First Properties of \mathcal{T}	424
	3.3. Utilization of the Cone Property	426
	3.4. Proof of Theorem 3.1 (End)	432
	3.5. Another Form of Theorem 3.1	435
4.	Examples	436
	4.1. Example 1: The Kuramoto-Sivashinsky Equation	436
	4.2. Example 2: Approximate Inertial Manifolds for the	\$\bar{\bar{\bar{\bar{\bar{\bar{\bar{
	Navier-Stokes Equations	438
	4.3. Example 3: Reaction-Diffusion Equations	440
	4.4. Example 4: The Ginzburg-Landau Equation	441
5.	Approximation and Stability of the Inertial Manifold with	
	Respect to Perturbations	442
ΔΊ	PPENDIX	
	ollective Sobolev Inequalities	446
	Introduction	446
1.	Notations and Hypotheses	447
	1.1. The Operator A	447
	1.2. The Schrödinger-Type Operators	449
2	Spectral Estimates for Schrödinger-Type Operators	451
	2.1. The Birman-Schwinger Inequality	451
	2.2. The Spectral Estimate	454
3.	Generalization of the Sobolev-Lieb-Thirring Inequality (I)	457
	Generalization of the Sobolev-Lieb-Thirring Inequality (II)	463
	4.1. The Space-Periodic Case	464

XV1	Contents	
4.2. The General Case	466	
4.3. Proof of Theorem 4.1	468	
5. Examples	471	
Bibliography	475	
Index	497	

•%

8.5

•

28

2° € 2.22 36