		TX
%		

Contents

PART 1 — PEAKS OF RANDOM FUNCTIONS AND THE EFFECT OF NOISE ON RELAYS 3 Chapter 1. The Mean Number of Peaks of a Random Function 1. The Mean Number of Peaks of a Smoothly Varying Process 2. The Mean Number of Peak Clusters of a Markov Process 3. Application of the Formula for the Mean Repetition Rate of Peak Clusters Chapter 2. The Duration of Peaks of a Markov Process . . 1. The Mean Number of Peaks of Duration Ex-22 ceeding T 27 3. The Unnormalized Probability Density of the 36 4. The Relation between the Distribution of Peak Durations and the Correlation Function of the 39 43 5. Peaks of a Smoothed Process. 45 Supplement Chapter 3. Smoothly Varying Noise and its Effect on Relays. 1. The Distribution of Peak Durations 2. Other Methods for Investigating Peaks of 3. The Area under the Peaks. 68

	4. Effect of Pulse Signals on a Relay in the Presence	72
	of Noise. The Dead Time	73
	Presence of Noise	80
OSC	PART 2 — NONLINEAR SELF-EXCITED CILLATIONS IN THE PRESENCE OF NOISE	
Chapter 4.	Basic Equations Describing the Operation of an Oscillator in the Presence of Noise	87
	1. Preliminary Remarks	87
	2. An Example of a Self-Excited System. The	
	Vacuum-Tube Oscillator	90
Ωi.	3. Equations in Standard Form and the Simplified	07
	Equations	97 105
	Supplement	
Chapter 5.	Methods of Solving the Simplified Equations	120
	1. Amplitude Fluctuations as a Markov Process.	
	The Fokker-Planck Equation	
	2. The Linearization Method	
	3. The Quasi-Static Method	134
	4. Summary of the Applicability of the Various	1 4 1
	Methods	
	Supplement	T-4-4
Chapter 6.	Effect of Weak Internal Noise on an Oscillator .	147
	1. The Low Intensity of Shot Noise and the	
* .	Linearized Equations	148
	2. Shot Noise with Neglect of Periodic Changes of	14000000
	Anode Current	
	3. Periodic Nonstationarity of Shot Noise	162
	4. Influence of Amplitude Fluctuations on Phase Diffusion	166

CONTENTE	xiii
CONTENTS	XII.

	Chapter 7.	Effect of Strong External Noise on an Oscillator .	170
		1. Phase Fluctuations due to Noise Applied to the	
		Inductive Branch	170
		2. Amplitude Fluctuations due to Noise Applied to	
	5-	the Grid Circuit	179
		3. The Amplitude Correlation Function and the	
		Spectral Density	187
	Chapter 8.	Effect of Slowly Varying Ambient Noise on an	
		Oscillator	193
		1. Self-Excited Oscillations in the Presence of	
	52	Fluctuations of Anode Voltage	195
		2. The Correlation Function and the Spectral	
	ž	Density of the Signal for Gaussian Frequency	\$4 \$2
		Fluctuations	199
		3. Effect of Flicker Noise on the Frequency of an	
		Oscillator	203
		4. Large Independent Phase Increments	207
		5. Small Independent Phase Increments	210
		6. Modulation of Self-Excited Oscillations by Noise	215
	Chanter 9	Synchronization of an Oscillator in the Presence of	
	Chapter 5.	Noise	222
		1. Basic Equations. Small Deviations from the	
		Synchronous Regime in the Linear Approx-	
80		imation	223
		2. The Stationary Phase Distribution and the Mean	
		Frequency	234
		3. Large Phase Deviations and Diffusion of the	89.50 5.
		Number of Oscillations	247
		4. The Case of a Large Synchronizing Signal	258
		Supplement	273
	Ol 10		277
	Cnapter 10.	Parametric Oscillations	aut I I
		1. Linear Parametric Oscillations. The Basic Equa-	279
		tions	217

XiV CONTENTS

	2.	Narı	ow-	Ba	nd (Qua	si-F	Iarn	non	ic F	ara	me	tric	Osc	il-	
		latio	ns	1	•	•		•	Œ.		*		٠	•		282
	3.	Rap	id P	ara	me	tric	Flu	uctu	atio	ons.	. A j	ppli	cati	on	of	
		the S	Stoc	has	tic	Me	tho	d.	•		2.0	3.	•			286
	4.	Simu	ıltaı	ieo	us F	Har:	moı	nic a	nd	Flu	ictu	atic	nal	Ex	ci-	
		tatio	ns	•	•		•	ě	•	79 👸	•		•		•	291
	5.	The	An	apli	tud	e I	Dist	ribu	tio	n.	Effe	ect	of	No	n-	
		linea	rity	٠		٠	•	•	•	•	٠	•	•	.	•	302
	6.	Para	met	ric	Sys	ten	18 V	vith	Ty	VO	Bra	nch	es.	Par	a-	
		metr	ic A	mp	olific	ers	180	•:	•	•	X • (•	•		•	305
Bibliography	٠	, E	•	•		•	•	ĕ	×	•	٠		•	•	•	323
Trados																327
Index																341