

CONTENTS

PREFACE	PAGE V
EDITOR'S NOTE	viii
TANDON LONGO DE PARENCIONE DEL ARIONE RECEIDATOR	
INTRODUCTION TO DISPERSION RELATION TECHNIQUES J. D. Jackson	
1. Historical Survey of Dispersion Relation Techniques	1
2. Elementary Considerations	6
3. Field Theory in Terms of Heisenberg Field Operators	11
4. Dispersion Relations for Forward Scattering	23
5. Dispersion Relations for Non-Forward Scattering	32
6. Applications of the Dispersion Relations for Scattering	37
7. Decay of the Pi Meson	47
Appendix: On the Solution of Certain Singular Integral Equations	54
THE ANALYTIC PROPERTIES OF PERTURBATION THEORY J. C. POLKINGHORNE	
1. Introduction	65
2. Anomalous Thresholds	65
3. Complex Singularities—the Vertex Part	68
4. Functions Defined by Integrals	70
5. The Analytic Properties of Perturbation Theory	76
6. Dual Diagrams	79
7. Electromagnetic Analogies	83
8. Majorisation	84
9. Loop Diagrams	85
10. Unitarity	90
PROOF OF SOME OF THE ANALYTIC PROPERTIES OF THE RELATIVISTIC SCATTERING AMPLITUDE W. THIRRING	
1. Axiomatic Formulation of Field Theory	95
2. Reduction Formulæ	96
3. The Jost-Lehmann-Dyson Representation	100
4. Derivation of Analyticity Properties from the Integral Representation	106
5. Domain of Analyticity of Im T	110
6. Dispersion Relations	114

PRACTICAL UTILISATION OF THE NEAREST SINGULARITY IN DISPERSION RELATIONS

MICHAEL J. MORAVCSIK

	1. Introduction	PAGE 117
Α	SEPARATION OF THE CONTRIBUTION OF THE NEAREST SINGULARITY	118
4 1.	2. Determination of the Parities and Coupling Constants by Extrapolation to the nearest Singularity, General Procedure	118
	3. Determination of the Parities and Coupling Constants by Extrapolation to the Nearest Singularity, Application and Results	124
	4. Determination of Cross Sections for Reactions on Virtual Targets	130
В.	EXPLICIT RECOGNITION OF THE CONTRIBUTION OF THE NEAREST SINGULARITY	136
	5. Modified Analysis of Nucleon-Nucleon Scattering, General Scheme	136
	6. Modified Analysis of Nucleon-Nucleon Scattering, Applications and Parameterisation of Phase Shifts	146
	Appendix: Other Determinations of Parities and Coupling Constants based on Dispersion Relations	157
D	OUBLE DISPERSION RELATIONS AND UNITARITY AS THE BA	SIS
	FOR A DYNAMICAL THEORY OF STRONG INTERACTIONS	
	GEOFFREY F. CHEW	
1.	Introduction	167
2.	The Lorentz-Invariant Amplitude and the Substitution Law	173
3.	The Mandelstam Representation	177
4.	Generalisation to include Charge and Spin	181
5.	Physical Interpretation of Singularities	183
6.	Partial-Wave Amplitudes	186
	Determination of a Partial-Wave Amplitude from its Unphysical Singularities	189
8.	Asymptotic Behaviour of Partial-Wave Amplitudes and Fundamental Inter- action Constants	195
9.	Pion-pion Scattering: General Formulation	198
10.	S-Dominant Solutions of the $\pi-\pi$ Problem	205
	<i>P</i> -Dominant Solutions of the $\pi - \pi$ Problem	207
12.	The Vertex Function of One Variable: Pion Electromagnetic Structure as an Example	209
13.	The Processes $\pi + N \leftrightarrow \pi + N$ and $\pi + \pi \leftrightarrow N + \overline{N}$	215
	Nucleon Electromagnetic Structure	221
	Conclusion	225
7	THE ELECTROMAGNETIC STRUCTURE OF PIONS AND NUCLEO WILLIAM R. FRAZER	NS
1	Introduction	227
	The Electromagnetic Structure of the Pion	228
	Partial-Wave Dispersion Relations for the Process $\pi + \pi \rightarrow N + \overline{N}$	235
	Dispersion Relations for the Nucleon Electromagnetic Structure	249
-		

xiii

CONTENTS

THE USE OF ONE-DIMENSIONAL REPRESENTATIONS IN PION PHYSICS

S. FUBINI

	PAGE
1. Introduction	259
2. The One-Dimensional Representation	260
3. Pion-Pion Scattering	264
4. Pion-Nucleon Scattering	266
5. Electromagnetic Form Factors of the Nucleon	271
6. Analyticity of the S-Matrix and Dispersion Relations in First Quantisation	276
THE EXICTENCE OF THE HANGITONIAN FOR CAUGAL GVCTE	NEC
THE EXISTENCE OF THE HAMILTONIAN FOR CAUSAL SYSTE	IVIO
J. M. Jauch	
1. Introduction	283
2. Mathematical Formulation of Conditions	284
3. Consequences from the Assumptions	286
4. Concluding Remarks	289