95. **S** 700 **E**S ₹.₹

CONTENTS

Chapter I

HAMILTON'S PRINCIPLE AND THE THEORY OF THE FIRST VARIATION

1

- §1. VARIATIONAL PROBLEMS IN ONE INDEPENDENT VARIABLE, 1
 - 1. Newton's Equations of Motion, 1
 - 2. The Euler-Lagrange Equation, 7
- §2. VARIATIONAL PROBLEMS IN TWO AND MORE INDEPENDENT VARIABLES, 15
 - 1. Vibrations of a Stretched String, 15
 - 2. The Euler-Lagrange Equation for the Two-Dimensional Problem, 16
- §3. THE ISOPERIMETRIC PROBLEM, 22
 - 1. The Problem of Dido, 22
 - 2. The Euler-Lagrange Equation for the Isoperimetric Problem in One Independent Variable, 23
- §4. NATURAL BOUNDARY CONDITIONS, 28
 - 1. A Problem of Zermelo in Modified Form, 28
 - 2. Natural Boundary Conditions for the One-Dimensional Problem, 29
 - 3. Natural Boundary Condition for the Two-Dimensional Problem, 30

Chapter II

REPRESENTATION OF SOME PHYSICAL PHENOMENA BY PARTIAL DIFFERENTIAL EQUATIONS

34

§1. THE VIBRATING STRING, 34

- 1. Vibrations of a Stretched String—Vectorial Approach, 34
- 2. An Attempt to Solve a Specific String Problem, 37
- 3. Boundary and Initial Conditions in Differential Equations, 42
- 4. Boundary and Initial Value Problem for the String, 45
- 5. The Uniqueness of the Solution of the String Equation, 46

§2. THE VIBRATING MEMBRANE, 49

- 1. Vibrations of a Stretched Membrane, 49
- 2. The Vibrations of a Membrane as a Variational Problem, 53
- 3. The Boundary and Initial Value Problem for the Membrane, 55
- 4. An Attempt to Solve a Specific Membrane Problem, 58
- 5. The Uniqueness of the Solution of the Membrane Equation, 62

§3. THE EQUATION OF HEAT CONDUCTION AND THE POTENTIAL EQUATION, 66

- 1. Heat Conduction without Convection, 66
- 2. The Potential Equation, 69
- 3. The Initial and Boundary Value Problem for Heat Conduction, 72
- 4. Stationary Temperature Distribution Generated by a Spherical Stove, 74
- 5. The Uniqueness of the Solution of the Potential Equation, 77
- 6. The Uniqueness of the Solution of the Heat Equation, 79

Chapter III

THEOREMS	RELATED	TO PARTIAL	DIFFERENTIAL
EQUATIONS	AND THE	IR SOLUTION:	S

82

- §1. GENERAL REMARKS ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS, 82
 - 1. The Problem of Minimal Surfaces, 82
 - 2. The Problem of Cauchy-Kowalewski, 85
- §2. INFINITE SERIES AS SOLUTIONS OF LINEAR HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS WITH HOMOGENEOUS BOUNDARY OR INITIAL CONDITIONS, 88
 - 1. Bernoulli's Separation Method, 88
 - 2. Solution of the Homogeneous Boundary Value Problem by Infinite Series, 91

Chapter IV

FOURIER SERIES

95

- §1. THE FORMAL APPROACH, 95
 - 1. Introductory Remarks, 95
 - 2. Approximation of a Given Function by a Trigonometric Polynomial, 96
 - 3. The Trigonometric Functions as an Orthogonal System, 97
 - 4. Approximations by Trigonometric Polynomials, Continued, 101
 - 5. Formal Expansion of a Function into a Fourier Series, 102
 - 6. Formal Rules for the Evaluation of Fourier Coefficients, 103

§2. THE THEORY OF FOURIER SERIES, 105

- 1. Illustrative Examples, 105
- 2. Convergence of Fourier Series, 111
- 3. The Convergence Proof, 113
- 4. Bessel's Inequality, 118
- 5. Absolute and Uniform Convergence of Fourier Series, 120

- 6. Completeness, 126
- 7. Integration and Differentiation of Fourier Series, 129

§3. APPLICATIONS, 132

- 1. The Plucked String, 132
- The Validity of the Solution of the String Equation for a Displacement Function with a Sectionally Continuous Derivative, 136
- 3. The General Solution of the String Problem—D'Alembert's Method, 140

Chapter V SELF-ADJOINT BOUNDARY VALUE PROBLEMS

145

182

- §1. SELF-ADJOINT DIFFERENTIAL EQUATIONS OF THE SECOND ORDER, 145
 - 1. Self-adjoint Differential Equations, 145
 - 2. Examples, 150
 - 3. The x, ϕ -Diagram, 152
 - 4. The Zeros of the Solutions of a Self-adjoint Differential Equation, 154
- §2. THE SELF-ADJOINT BOUNDARY VALUE PROB-LEM OF STURM AND LIOUVILLE, 163
 - 1. Eigenvalues and Eigenfunctions, 163
 - 2. The Sturm-Liouville Problem in the x, ϕ -Diagram, 167
 - 3. Number and Distribution of the Eigenvalues of the Sturm-Liouville Boundary Value Problem, 168
 - 4. The Orthogonality of Eigenfunctions, 175
 - 5. Fourier Expansions in Terms of Eigenfunctions, 177
 - 6. Completeness and the Expansion Problem, 178

Chapter VI

LEGENDRE POLYNOMIALS AND BESSEL FUNCTIONS

- §1. THE LEGENDRE EQUATION AND LEGENDRE POLYNOMIALS, 182
 - 1. Series Solution of a Linear Differential Equation of the Second Order with Analytic Coefficients, 182
 - 2. Series Solutions of the Legendre Equation, 188

CONTENTS

- 3. Polynomial Solutions of the Legendre Equation, 193
- 4. Generating Function—Legendre Polynomials, 194
- 5. Orthogonality and Normalization, 198
- 6. Legendre Functions of the Second Kind, 201
- 7. Legendre Polynomials as Potentials of Multipoles with Respect to an Action Point at Unit Distance, 202

§2. THE BESSEL EQUATION AND BESSEL FUNCTIONS, 204

- 1. Introductory Remarks, 204
- 2. Solution of a Linear Differential Equation of the Second Order at a Regular Singular Point, 209
- 3. Bessel Functions of Integral Order, 214
- 4. Bessel Functions of Nonintegral Order and of Negative Order, 216
- 5. The Linear Independence of Two Solutions of Bessel's Equation of Nonintegral Order, 220
- 6. Bessel Functions of the Second Kind, 222
- 7. Circular Membrane with Axially Symmetric Initial Displacement, 227
- 8. The Normalization of the Bessel Functions, 230
- 9. Integral Representation of Bessel Functions of Integral Order, 232
- 10. The Almost-Periodic Behavior of the Functions $\sqrt{x} J_{\rho}(x)$, 235

Chapter VII

CHARACTERIZATION OF EIGENVALUES BY A VARIATIONAL PRINCIPLE

239

§1. INTRODUCTION AND GENERAL EXPOSITION, 239

- 1. The Sturm-Liouville Equation as Euler-Lagrange Equation of a Certain Isoperimetric Problem, 239
- 2. Numerical Examples, 241
- 3. Minimizing Sequences, 244
- 4. The Existence of a Minimum, 248

§2. MINIMUM PROPERTIES OF THE EIGENVALUES OF A SELF-ADJOINT BOUNDARY VALUE PROBLEM, 253

1. The Solutions of a Certain Isoperimetric Problem as the Eigenfunctions of a Self-adjoint Boundary Value Problem, 253 2. The Eigenfunctions of the Sturm-Liouville Boundary Value Problem as Solutions of the Associated Variational Problem, 260

§3. THE METHOD OF RAYLEIGH AND RITZ, 269

- 1. Theorems Regarding the Secular Equation, 269
- 2. The Method of Rayleigh and Ritz, 273
- 3. The Eigenvalues of Ritz's Problem as Upper Bounds for the Eigenvalues of the Original Problem, 279
- 4. Successive Approximations to the Eigenvalues from Above, 281
- 5. Numerical Examples, 284

Chapter VIII

SPHERICAL HARMONICS

288

- §1. ASSOCIATED LEGENDRE FUNCTIONS, SPHERI-CAL HARMONICS, AND LAGUERRE POLY-NOMIALS, 288
 - 1. The Equation of Wave Propagation, 288
 - 2. Schroedinger's Wave Equation, 292
 - 3. The Hydrogen Atom, 296
 - 4. Legendre's Associated Equation, 299
 - 5. Spherical Harmonics, 300
 - 6. Laguerre Polynomials and Associated Functions, 302
 - 7. Solution of Schroedinger's Equation for the Hydrogen Atom, 305
- §2. SPHERICAL HARMONICS AND POISSON'S INTEGRAL, 308
 - 1. Stationary Temperature Distribution Generated by a Spherical Stove, 308
 - 2. Fourier Expansion in Terms of Associated Legendre Functions, 311
 - 3. Poisson's Integral Representation of the Solution of the Potential Equation, 314
 - 4. Expansion in Terms of Laplace Coefficients, 316

CONTENTS xvii

Chapter IX

THE	NONHOMOGENEOUS	BOUNDARY	VALUE
PROI	BLEM		

322

- §1. THE INFLUENCE FUNCTION (GREEN'S FUNC-TION), 322
 - 1. The Nonhomogeneous String Equation, 322
 - 2. Determination of Green's Function, 323
 - 3. Examples, 326
 - 4. A General Discussion of the Nonhomogeneous and the Associated Homogeneous Boundary Value Problem, 329
 - 5. The Existence of Green's Function, 331

§2. THE GENERALIZED GREEN FUNCTION, 335

- 1. Construction of Green's Function in the Case Where the Associated Homogeneous Boundary Value Problem Has a Nontrivial Solution, 335
- 2. Examples, 340

§3. FURTHER ASPECTS OF GREEN'S FUNCTION, 344

- 1. Green's Function and the Sturm-Liouville Boundary Value Problem, 344
- 2. Green's Function for Partial Differential Equations, 348

APPENDIX

353

KEY FOR REFERENCE SYMBOLS USED IN THE APPENDIX, 353

- I. VECTOR ANALYSIS, 354
 - A. Vector Operations, 354
 - B. Differential Operations, 355
 - C. Integral Theorems, 358

II. CONVERGENCE, 359

- A. Definitions, 359
- B. Convergence Tests, 360
- C. Theorems, 360
- D. Power Series, 361

xviii CONTENTS

III. ORDINARY DIFFERENTIAL EQUATIONS, 362

A.	Theorem	on	Implicit	Functions,	362
----	---------	----	----------	------------	-----

B. Systems of Ordinary Differential Equations of the First Order, 363

ANSWERS	AND	HINTS	TO	EVEN	NUMBERED	
PROBLEMS	5				20	

365

INDEX

375

	85	