

CONTENTS

Preface vii

1-1 Introduction

1-2	Vector Spaces; Linear Transformations 5
1-3	Eigenvalues; Eigenvectors 8
1-4	Inner-product Spaces 10
1-5	Self-adjoint Transformations 12
1-6	The Infinite-dimensional Case 16
1-7	Operators 24
1-8	Applications 29
1-9	Banach Spaces and Linear Functionals 33
1-10	Fixed-point Theorems and Applications 37
1-11	Lebesgue Integration, a Survey 48
2. N	Ionlinear Algebraic and Transcendental Equations 53
2-1	Introduction 53
2-2	The Newton-Raphson Method 56
2-3	The Method of Steepest Descent 70
2-4	Saddle-point Method or Steepest-descent Method of Complex
	Integration 88

1. Linear and Nonlinear Transformations 1

3.	Nonlinear Optimization; Nonlin	ear Programming
	and Systems of Inequalities 9.	3

0 4	T	1 1	^^
3-1	1 17 17 1	roduction	93
	1116		

- Maxima, Minima, Quadratic Forms, and Convex Functions 96
- Nonlinear Programming 103 3-3
- Linear Programming 106
- Characterization of the Optimum on the Boundary; Saddle Points; Duality 113
- Construction of Solutions
- Optimization Problems with Infinitely Many Constraints 3-7 168

4. Nonlinear Ordinary Differential Equations

- Introduction
- 4-2 Some Nonlinear Equations 178
- Existence and Uniqueness for First-order Systems 183
- Linear Equations—Oscillatory Motion, Stability
- Nonlinear Equations—Perturbation Method 199
- Phase-plane Analysis—Stability Behavior in the Small (Systems of Two 206 Equations)
- 4-7 Limit Cycles-Stability Behavior in the Large (Systems of Two Equations) 214
- Topological Considerations: Indices and the Existence of Limit Cycles (Systems of Two Equations)
- 4-9 Periodic Solutions of Systems with Periodic Coefficients
- 4-10 Periodic Solutions of Nonlinear Systems with Periodic Coefficients 225
- 4-11 Lyapunov Stability
- 4-12 General Methods of Solution 254

5. Introduction to Automatic Control and the Pontryagin Principle

- Introduction
- Stability and a Class of Control Equations 281
- Pontryagin's Maximum Principle
- Functional Analysis and Optimum Control 302

6. Linear and Nonlinear Prediction Theory

- Introduction 317
- The Discrete Stationary Case 320
- Construction of the Discrete-case Estimate 323 6-3
- 6-4 The Discrete Prediction Problem

339

XV

6-10	Examples	342

6-5

6-6

6-7

6-8

6-9

Conditional Expectation

The Prediction Error

The General Estimation Problem 347 6-12

The Continuous Stationary Case

The Continuous Prediction Problem

- Polynomial Estimation 6-13
- 6-14 The Karhunen-Loeve Expansion
- Dynamical Systems with Control Variables 357 6-15

330

The Special Case of Rational Densities

Appendix 365

Index 373