目次

第一篇ポテンシァル論

第一章 Newton ポテンシァル函數

1.	ポテンシァル函數の存在する條件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	非循廻域と循廻敷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	萬有引力とポテンシァル函数・・・・・・・・・・・・・・・・	5
4.	二重設 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
5 .	Gaußの定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
6.	一重殼の境の條件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
7 .	二重殼の境の條件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
8.	Biot-Savart の法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
9.	線の上に物質のある場合のポテンシァル函數・・・・・・・・	18
10.	一様な面密度を有する平面積のポテンシァル函数・・・・・・	19
11.	Green の定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
12.	解の唯一性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
13.	ポテンシァル函数を決定する事 ・・・・・・・・・・・・・・	26
14.	ポテンシァル函数が多價の場合にそれを決定する事・・・・・	30
	Green の函數・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	遊關係 · · · · · · · · · · · · · · · · · · ·	
	ポテンシァルの平均値定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
18.	ヹクトルの分解とヹクトル-ポテンシァル・・・・・・・・・・	36
	第二章 精圓體のポテンシァル函數	
19.	等ポテンシァル面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
20.	精圓體殼のポテンシァル函數・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
21.	一定のポテンシァルにある楕圓板のポテンシァル函数・・・・・	5 0
22.	中空な楕圓體のポテンシァル函數・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	全部物質の滿たされてゐる精圓體のポテンシァル函數・・・・	
	廻轉楕圓體のポテンシァル函數 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

第三章 對數ポテンシァル函數

20.	野 製 ボ ナ ソ シ ァ ル 凶 多	Į.	• •		• •	• •	•	• •	•	•	•	•	•	٠	•	٠	•	٠	٠	•	58
26 .	二重線のポテンシァル	函	數	•		•			•	•	•		•	•			•	•	•	•	59
27 .	輪のポテンシァル函数	Ŕ,		•	, .	•	• ,•	٠,	. •	•	•		•	•	•	•	•	•	•	•	5 9
28.	圓板のポテンシァル	E	ξ.	•	• •	•		•			•	• •		•	•	•	•	•	٠.		60
2 9.	線の境の條件・・・			, •		•	•		•	•	•	٠. •		•	•	•	•	•	•	٠	60
30.	二重線の境の條件・・	•		•	• •	•	• •		•	•	•		÷	•	•	•	•	•	•:	•	61
31.	面密度の満足する式	`•		•		•	•	• •	•	•	•		•	**	•	•	٠	•	•	•	62
32.	板の境の條件・・・			٠		•	•			*	٠			•	•	٠	•	•	•	•.	63
33 .	Greenの定理の應用	•	٠.	•	. :	•		• •	•	•	:•		•	٠	٠	•	•		•	•	64
34.	ポテンシァル函数の別	安定		•	• •	٠	•	•	•	٠	•			•	•	•	•	•	•	•	66
35 .	Green の函数・・・・					•	• -	•	• .•	•	•		•	•	•	•	•	•	•		67
36 .	平均値の定理・・・・			•		•	•		•	•	•.12	. :	•	•		•	•	•	•	•	68
	A-L		e-e-					12 A 770					ı ılı	•							
	第四章		郛		、本	7	. >	^ §	7	7	ル	图	果	X							
	Mathieu の第二ポテン																				
								7													70
38.	Greenの定理の應用	•		•	• •	•	• •	•	•	•	•	•	• •	•	•	٠	•	•	٠	•	10
38.	Greenの定理の應用	•	•	•	•	•	• •		•		3•2	3.● (•	•	•	•	٠	•		•	•	70
38.					ie:															•	70
38.	第二篇	F	οι	ır	ieı	•	の	秘	2 1	数	.]	及	۲	K"	看	复	5			•	70
38.	第二篇	F	οι	ır		•	の	秘	2 1	数	.]	及	۲	K"	看	复	5			•	70
	第二篇	F ou	ol	ır	iei	· 级	の 数	秘及	Z 3	数話	· ·	及分	0	j J	看里	封 論	分	}			
39.	第二篇第二章	'ou	ol	ır	iei	· 秘·	の 数 ・	秘及·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	数話	青	及 分·	ر ص	ド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	毛	封 論	分	ት	•		75
3 9.	第二篇 第二章 第一章 Fourierの級数・・・	F'ou	ol	ır	iei	· ·	の数・・・・	秘 及		数	養	交	ر ص	ド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	看 里	封 論	分 .	}	•	•	7 5
3 9. 4 0. 4 1.	第二篇 第一章 Fourierの級数··· Cesàroの求和法··	F'ou	ol	ır	iei	· · · · · · · · · · · · · · · · · · ·	の 數	級 及	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	数 : ** · · · · · · · · · · · · · · · · · ·	.	交	رم م	が・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	看	封 論	分 .	}	•	•	75 76
39. 40. 41. 43.	第二篇 第一章 Fourierの級数・・・ Cesàroの水和法・・ Hardyの定理・・・ Fejérの積分・・・・ Fourierの級数の收敛	F'ou	rie	ır	iei		の 數 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	級	ار الم الم	数	煮	及 分 · · · ·	رم 	٦. ١. ١.	看 里 · · ·	負 論	分.	}	•	•	75 76 78 80 82
39. 40. 41. 43.	第二篇 第一章 Fourierの級数・・・ Cesàroの求和法・・ Hardyの定理・・・ Fejérの積分・・・・	F'ou	rie	ır	iei		の 數 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	級	ار الم الم	数	煮	及 分 · · · ·	رم 	٦. ١. ١.	看 里 · · ·	負 論	分.	}	•	•	75 76 78 80 82
39. 40. 41. 43.	第二篇 第一章 Fourierの級数・・・ Cesàroの水和法・・ Hardyの定理・・・ Fejérの積分・・・・ Fourierの級数の收敛	F'ou	rie	r	iei	· · · · · · · · · · · · · · · · · · ·	の 数	級	ار الم الم	数	煮	及 分	رم 	デ ・ ・ ・	看 里 · · · ·	負 論 .	分	}	•	•	75 76 78 80 82
39. 40. 41. 42. 43.	第二篇 第一章 F Fourierの級数・・・ Cesàroの求和法・・・ Hardyの定理・・・ Fejérの積分・・・・ Fourierの級数の枚敛 Fourierの級数の積分	F'ou	rie	r	iei	· · · · · · · · · · · · · · · · · · ·	の 数	秘 及	الم الم الم	数	育	及 分	رم 	٠ • • • •	看 里 · · · ·	負 論	分	}	•		75 76 78 80 82 85
39. 40. 41. 43. 44. 46.	第二篇 第一章 F Fourier の級数 Cesàro の求和法 Hardy の定理 Fejér の積分 Fourier の級数の積分 Fourier の級数の積分 Fourier の級数の微分	Four	Ol rie	ır	iei	· · · · · · · · · · · · · · · · · · ·	の数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	秘 及	الم الم الم	数	贄	处 分	رم 	¥ · · · · · · · · · · · · · · · · · · ·	看 里 · · · · · ·	負 論	分	}	•		75 76 78 80 82 85 86
39. 40. 41. 42. 43. 44. 45.	第二篇 第一章 F Fourier の級数・・ Cesàro の求和法・・ Hardy の定理・・・ Fejér の積分・・・ Fourier の級数の積分 Fourier の級数の積分 Fourier の級数の積分 Fourier の級数の積分 Fourier の級数の積分	Four	ol rie	r	iei	· · · · · · · · · · · · · · · · · · ·	の 数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	秘 及		数		及 分			看 里 · · · · · · ·	負 論	分	}	•		75 76 78 80 82 85 87 88
39. 40. 41. 42. 43. 44. 45. 46. 47.	第一章 F Fourier の級数・・ Cesàro の求和法・・ Hardy の定理・・・ Fejér の積分・・・ Fourier の級数の積分	'ou	Ol rie	r	iei	· · · · · · · · · · · · · · · · · · ·	の 数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	秘 及		数	煮	反 分	رم 		看 里 · · · · · · ·	負 論 	分	}			75 76 76 82 82 82 82 82 82 82 82 82 82 82 82 82

50 .	Fourier の積分の例	97
51.	Fourier の級数の岡解	97
	第二章 Fourier の級數及び積分の應用	
52.	板の中の熱の傳導――初めの温度が與へられてある場合	100
53.	球の中の熱の傳導――初めの溫度が與へられてある場合	108
54.	球を週期的に熱したり冷却したりする場合の温度の分布	106
55 .	一樣な棒を週期的に熱したり冷却したりする場合の温度の分布	109
56.	一元的の熱の傳導――初めの溫度が與へられてある場合	110
57.	無限固體中の三元的の熱の傳導	114
58 .	一元的の熱の傳導――板の一面の溫度が時の函数の場合	118
	1° Stokes の方法	110
	2º Riemann の方法	118
59.	半無限の固體の一面の温度が時の函数の場合の温度の分布	120
60.	板の中の熱の傳導――一面の熱の傳導の割合が與へられてある	
25	場合	124
61.	半無限の固體の中の熱の傳導――一面の熱の傳導の割合が與へ	
	られてある場合	12
62.	無限に廣くて薄い導體の一直線上のポテンシァルが與へられて	
	ある場合のポテンシァル函數	12
63.	薄い導體の圓板の周圍にてポテンシァルが與へられてある場合	
	のポテンシァル函数	12
64.	矩形の導體中のポテンシァル函数	12
65.	一様な絲の横振動	12
66.	無限に長い絲に小質量を附けた場合の横振動	13
67.	一様な矩形膜の横振動	13
68.	板の一面から眞空中に輻射がある場合の温度の分布	13
69.	板の一面から眞空中に輻射のある場合――眞空の溫度が時の函數	14
70.	二次元に於ける Cauchy-Poisson の波動の問題 — 表面の初めの上	
	昇が與へられてある場合	14
71.	二次元に於ける Cauchy-Poisson の波動の問題——表面に週期的壓	
	力が働く場合	15
72 .	二次元に於ける Cauchy-Poisson の波動の問題—— Rayleigh の方法・	16

第三篇 球 函 數

第一章體球函數

73 .	緒 言	173
74.	n 次の體球函數と -n-1 次の體球函數	174
75 .	Laplace の式を極座標で表はし, 體球函数の特別の場合を導く	174
76 .	完全體珠函數	175
77 .	軸に沿うての微分	176
7 8.	總ての體球函数は $\frac{1}{r}$ を微分して得られる	177
	第二章 帶球 函數	
79 .	表面球函数と帶球函数の滿足すべき微分方程式	180
8 0.	帶球函數の形	180
81.	Rodrigues の公式	182
82.	體球函數をもの倍角の餘弦級數で表はすこと	184
83.	帶球函数を定積分で表はすこと	186
84.	帶球函数の次数が無限大の場合の値	187
85.	帶球函数の二三の性質に闘する注意	190
86.	帶球函数の根	190
87.	帶球函数の表及び曲線	192
88.	帶球函數の微係數に就いて	194
89.	Legendre の微分方程式の特解を詳しく論ずる事	196
90.	第二種帶球函數 Qn(x)	200
91.	線形微分方程式と Qn(x) ——その一	202
92.	一一その二	204
93.	同上 一その三	205
94.	漸化式	209
	$P_n(x)$ と $Q_n(x)$ との間の關係	211
96.	$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = f(x)$ の解	211
97.		212
	例 1. 輪のポテンシァル函数	212
	例2 順板のボテンシャル函数	213

	例 3. 圓板の二重殻のポテンシァル函敷	214
	例 4. 帶電された圓板のポテンシァル函數	216
	第三章 函数の展開と表面球函数附圓錐函数	
98.	任意の函數を球面の上で展開する事	218
99.	Y_n を含む定積分——その一	220
100.	同上 ――その二	222
101.	同上 ――その三	22 3
102.	函數の展開の唯一性	223
103.	$f(\mu)$ を $P_n(\mu)$ の級数に展開する事	224
104.	$\frac{dP_n(x)}{dx}$ を $P_n(x)$ で展開する事	225
105.	函数の展開の收斂値	225
106.	球面上の境界値問題	229
	例 1. 一定のポテンシァルに帶電した半球を合せて球を作る	
	場合のポテンシァル函數	230
	例 2. 二つの球の間のポテンシァル函數	231
	例 3. 一様な磁場に球が置いてある場合のポテンシァル函數・	232
	例 4. 半球の温度の分布	232
	注意 圓錐面に對する注意	233
107.	$\dot{Y}_n(\mu, \varphi)$ の形	234
108.	函數の展開に於ける tesseral harmonics の係數を決定すること・・	236
109.	$P_m(\cos\gamma)$ を展開すること	238
110.	例題	239
	例 1. 球の密度がCrkYm(µ,φ)なる場合の球外のポテンシァル函数	239
	例 2. 球の密度が kz²x² なる場合の球外のポテンシァル函數	240
	例 3. Gaußの地磁氣の理論	243
	例 4. 球に近い導體の上の電荷の分布	246
	例 5. 中空な球を磁場に置いた場合のポテンシァル函数・・・	249
	例 6. 球形をなす空氣の薄い層の振動	25]
	例 7. 球形の水滴の振動	255
111.	圓錐函數	260
	その應用	269

目

ix

第四篇 圓 壔 函 數

第一章 圓壔函數の理論

112.	圓檮函敷の定義と Bessel の微分方程式	265
113.	Besselの微分方程式と圓壔函數	266
114.	第一種圓壔函數 $J_n(x)$	266
115.	第二種圓壔函數 $Y_n(x)$	268
116.	第三種圓壔函數 H1,n(x) 及び H2,n(x)	272
117.	Besselの微分方程式の他の解	273
118.	圓壕函敷の主値	278
119.	Lommel の式	279
120.	最も一般な圓壔函数	281
121.	Bessel の係数	283
122.	函数 $\Psi_n(x)$, $\Pi_n(x)$, $X_n(x)$, $\Omega_n(x)$	285
123.	Bessel 函数を他の積分の形で表はすこと	287
124.	函數 $\Phi_n(x)$, $\Lambda_n(x)$	290
125.	Bessel 函数を含む二三の級数	291
126.	加法定理	296
127.	Bessel の天文に闘する問題の解	300
128.	二つの圓壔函數を含む不定積分	301
129.	圓壔函數を用ひて解き得る微分方程式	304
130.	Hankel の積分	308
131.	H1,n(x) 及び H2,n(x) の漸近級數	314
132.	$J_n(x)$, $Y_n(x)$ の漸近級數	318
133.	副變数πが奇數の半分の場合の圓壔函數	319
134.	再び圓壔函數を積分の形で表はす事に就いて	321
135.	Bessel 函数の根	326
136.	函數 $I_n(x)$, $K_n(x)$	327
137.	Kelvin の ber, bei 函数	334
138.	圓檮函数の記法に就いて	335
139.	圓檮函數の表及び曲線	338
140.	$\int_0^\infty \cos(u^3-zu)du$ の値を求める事	343

141.	Bessel 函数を含む定積分——その一	345
142.	同上 一その二	347
143.	同上 ――その三	349
144.	同上 —— その四	352
145.	同上 一その五	353
146.	同上 一その六	356
147.	同上 —— その七	359
148.	Bessel 函數と球函數との關係	363
149.	Fourier-Bessel-Diniの展開——その一	364
150 .	同上 — その二	367
151.	同上 ――その三	368
152.	同上 一その四	369
153.	同上 —— その五	372
	第二章 圓濤函數の應用	
154.		375
	1°太皷の膜の振動	375
	2°輪狀の膜の振動	377
	3° 扇形の膜の振動	378
	4°無限に廣い膜の振動	378
155.		380
	1°原點が攪亂の中心の場合の無限に廣い膜の振動	380
	2° 圓い穴のある無限に廣い膜の振動	3 8 2
	3° 半徑 a なる圓い膜の振動	382
156.	圓壔中の熱の傳導――定常狀態に於ける溫度の分布	387
157.	圓壔中の熱の傳導――初めの溫度が與へられてある場合	391
158.	圓壔中の熱の傳導――境の溫度が時の函數の場合	392
159.	分散する媒質中の平面波の傳播	398
160.	粘性液體の鉛直圓壔內に於ける運動	398
161.	粘性液體中に振動する鉛直圓壔がある場合の液體の運動	401
162.	有限な長さの圓壔内に於ける電壓	406
163.	圓壔形の水槽中の水の小なる振動	408
164.	Cauchy-Poisson の波動の問題	417

165	Cauchy-Poisson の波動の問題—— Rayleigh の方法	418
166	半無限の彈性體の表面に壓力が働く場合の平衡問題	423
167	一様なポテンシァルにある圓板のポテンシァル函数	427
	1° ポテンシァル函数が Bessel 函数を用ひて表はされること	427
	2° 有限な長さの圓燽內の電流に對する應用	432
168.	球の中の熱の傳導	434
	1°表面の温度が0°で初めの温度が與へられてある場合	435
	2° 眞空中に輻射のある場合	436
	3°初めの温度が0°で表面の温度が時の函数の場合	438
169 .	變形しない球の中の空氣の振動	439
170.	球形の導體上の電氣振動	442
171.	一様な磁場を取り去つた場合の球の中の電流	448
172.	長い電線を傳はる對稱な電波	453
	附錄	
	第一積分方程式	
173.	積分方程式	481
174.	Abelの力學の問題	481
175.	Liouville の取り扱つた第二種積分方程式	484
176.	逐次代入の方法	486
177.	Volterra の第二種積分方程式の取り扱ひ方	491
178.	無限に多くの變數のある一次代數方程式	495
179.	Fredholm の解き方	504
180.	媒介變數を含む積分方程式	512
181.	同次積分方程式に關する基本的な定理	515
182.	對稱核	517
183.	直交函數	521
184.	核が有限な第一種積分方程式	529
	第二ガンマ函數	
185.		532
	ガンマ函數の歷史	904

	目	xiii
187.	ガンマ函數に關する公式	534
188.	曲線 $y = I(x)$	540
189.	Euler の常敷γを求める公式	541
	第三曲線座標	
190.	互に垂直に交はる面	544
191.	線素	545
192.	ΔV の變換	546
193.	ヹクトル 微分	546
194.	三つの廻轉の角と座標面の主曲率	547
195.	歪	549
196.	平衡又は小さな運動の張合の式	551
197.	等方性の物質に對する運動方程式	554
	公 式 集	
	ポテンシァル論	561
	Fourier の級敷及び積分	565
	球函數	566
	圓壔函數	570
	其の他	586
	索 引	587

325

*