

Contents

Preface	vii
Acknowledgments	x
Notations	χV
Part I. A MATHEMATICAL PHYSICS INTRODUCTION	
Chapter 1: The Obstacle Problem	
1. Introduction	1
2. Deformation of a Membrane Constrained by an Obstacle	1
3. Discussion of the Variational Inequality Formulation	4
4. Bending of a Plate over an Obstacle	7
5. Minimal and Capillary Surfaces with Obstacles	9
6. The Elastoplastic Torsion of a Cylindrical Bar	12
7. A Cavitation Problem in Hydrodynamic Lubrication	15
8. Mixed and Boundary Obstacle Problems	18
9. Comments	21
Chapter 2: Some Free Boundary Problems	
1. Introduction	22
2. Conservation Laws in Continuum Physics	22
3. Filtration through a Porous Medium	26
4. The Baiocchi Transformation for the Dam Problem	29
5. Solidification of a Continuous Ingot	31
6. Continuous Casting by Variational Inequalities	34
7. Quasi-Steady Electrochemical Shaping	36
8. The Transformed ECM Problem	38
9. On the Applicability of Variational Inequalities	41
10. Flow with Wake in a Channel past a Profile	44
11. The One Phase Stefan Problem	50
12. Comments	52
Chapter 3: Some Mathematical Tools	
1. Introduction	54
2. Basic Functional Analysis	54

				۰	ı
- 7	ч	•	,	•	4

3. Functions Spaces	60
4. Lipschitz Domains of R ⁿ	66
5. Traces and Imbedding Theorems	71
6. Green's Formula and Boundary Value Problems	7 5
7. Second Order Elliptic Equations	81
8. Comments	85
	**
Part II. UNILATERAL ELLIPTIC VARIATIONAL INEQUALITIES	32 33
Chapter 4: Variational Inequalities in Hilbert Spaces	
1. Introduction	87
2. The Projection Theorem	87
3. The Lions-Stampacchia Theorem	93
4. Abstract Stability Results	98
5. Positivity, Comparison and Maximum Principles	104
6. The Semi-Linear Mixed Obstacle Problem	110
7. The Case of Noncoercive Bilinear Form	115
8. Quasi-Linear Obstacle Problems	123
9. Singular Perturbations in Variational Inequalities	127
10. Comments	134
Chapter 5: Smoothness of the Variational Solution	
1. Introduction	136
2. Dual Estimates and Regularity	136
3. A Penalization for the Obstacle Problem	143
4. Strong Continuous Dependence	152
5. Boundary Penalization and Localization	158
6. Boundedness of Second Derivatives	162
7. Hölder Continuity of the Solution	169
8. Relations with Potential Theory	175
9. Comments	183
Chapter 6: The Coincidence Set and the Free Boundary	₩ %2
1. Introduction	185
2. Bidimensional Free Boundaries	186
3. Caffarelli's Theorem and General Regularity	189
4. Cylindrical, Starshaped and Convex Configurations	193
5. Stability of the Free Boundary	198
6. General Stability Conditions	204
7. Estimates on the Coincidence Set	211
8. Further Remarks on the Free Boundary	220
9. Comments	225
	x 5502•

Contents	X 111
Chapter 7: Unilateral Plateau Problems	
1. Introduction	227
2. Surfaces of Constant Mean Curvature with Obstacles	227
3. Continuous Dependence on the Domain and on the Obstacle	234
4. Smoothness of H -Surfaces over Obstacles	240
5. Some Properties of the Free Boundary	246
6. Comments	249
Part III. APPLICATIONS IN MECHANICS AND IN PHYSICS	
Chapter 8: Applied Obstacle Problems	
1. Introduction	251
2. Asymptotic Analysis in the Lubrication Problem	251
3. The Lubrication Problem with Small Eccentricity	255
4. The Elastoplastic Variational Inequality	260
5. The Elastoplastic Free Boundary	267
6. The Signorini Problem	273
7. Remarks on the Thin Obstacle Problem	282
8. Comments	287
Chapter 9: Dam and Stefan Type Problems	
1. Introduction	289
2. The Rectangular Dam Problem	289
3. Homogenization of the Dam Problem	294
4. The Continuous Casting Problem	302
5. The Electrochemical Machining Problem	310
6. Variational Inequalities in Fluid Dynamics	32 0
7. Comments	328
Bibliography	329
Subject Index	349