• • • • • • • • • • • • • • • • • • •		

Contents

Prej	ace		vu
Intr	oduc	tion	ix
Con	tents	of Other Volumes	xv
XI:	sc	ATTERING THEORY	
	1.	An overview of scattering phenomena	1
	<i>2</i> .	Classical particle scattering	5
	<i>3</i> .	The basic principles of scattering in Hilbert space	16
	Ap	pendix 1 Stationary phase methods	37
	Ap	pendix 2 Trace ideal properties of $f(x)g(-i\nabla)$	47
	Ap	pendix 3 A general invariance principle for wave operators	49
	4.	Quantum scattering 1: Two-body case	54
	5.	Quantum scattering II: N-body case	75
	6.	Quantum scattering III: Eigenfunction expansions	96
	Ap	pendix Introduction to eigenfunction expansions by the auxiliary space method	112
	7.	Quantum scattering IV: Dispersion relations	116
	8.	Quantum scattering V: Central potentials	121
		A. Reduction of the S-matrix by symmetries	121
		B. The partial wave expansion and its convergence	127
		C. Phase shifts and their connection to the Schrödinger	
		equation	129
		D. The variable phase equation	133
		E. Jost functions and Levinson's theorem	136
		F. Analyticity of the partial wave amplitude for generalized	
		Yukawa potentials	143
		G. The Kohn variational principle	147

A_{l}	ppendix 1 Legendre polynomials and spherical Bessel functions	149		
A_{l}	pendix 2 Jost solutions for oscillatory potentials	155		
	pendix 3 Jost solutions and the fundamental problems of			
	scattering theory	164		
9.	Long-range potentials	169		
10. Optical and acoustical scattering I: Schrödinger operator methods				
A_{I}	pendix Trace class properties of Green's functions	203		
11	Optical and acoustical scattering II: The Lax-Phillips method	210		
Ap	pendix The twisting trick	241		
12	. The linear Boltzmann equation	243		
13.	Nonlinear wave equations	252		
Ap	pendix Conserved currents	278		
14.	Spin wave scattering	285		
15.	Quantum field scattering I: The external field	293		
16.	Quantum field scattering II: The Haag-Ruelle theory	317		
17. Phase space analysis of scattering and spectral theory				
Ap	pendix The RAGE theorem	340		
No	otes	344		
No	tes on scattering theory on C^* -algebras	382		
Pro	oblems	385		
MATER	AL PREPRINTED FROM VOLUME IV			
XIII.6	The absence of singular continuous spectrum I: General theory	406		
XIII.7	The absence of singular continuous spectrum II: Smooth perturbations	411		
	A. Weakly coupled quantum systems	421		
	B. Positive commutators and repulsive potentials	427		
	C. Local smoothness and wave operators for repulsive potentials	133		
XIII.8	The absence of singular continuous spectrum III:	723		
71 71 71 7	Weighted L^2 spaces	438		
	Notes	447		
	Problems	450		
List of S	ymbols	455		
Index		457		