Contents | | | | Page | | | |-----------|--|---|--|--|--| | CHAPTER I | EXISTENCE AND UNIQUENESS FOR THE INITIAL VALUE PROBLEM UNDER THE HYPOTHESIS OF LIPSCHITZ | | | | | | | 1. | General Results 1.1 Definitions 1.2 Geometrical Interpretation 1.3 Functions Satisfying a Lipschitz Condition 1.4 Existence Theorem 1.5 Uniqueness Theorem | 1
3
4
5
10 | | | | | | Continuous Dependence on Initial Conditions and Parameters Interval of Definition and Extension of Solutions Gronwall's Lemma Application of Gronwall's Lemma to the Cauchy Problem | 12
13
17 | | | | | 2. | Qualitative Properties of Solutions
2.1 Differentiability of Solutions
2.2 Analyticity of the Solutions | 23
23
24 | | | | | 3. | Solutions as Functions of the Initial Data 3.1 Differentiability with Respect to the Parameter 3.2 Differentiability with Respect to the Initial Point 3.3 Higher Order Differentiability and Analyticity 3.4 Remark about a More General Point of View | 29
30
32
39
40 | | | | | 4. | Systems of Equations as Particular Transformations Between Function Spaces 4.1 Review of Metric Spaces 4.2 Review of Banach Spaces 4.3 The Cauchy Problem and Fixed Points of Certain Transformations in Banach Spaces | 40
41
47 | | | | | 5. | Exercises 5.1 Variables Separable Equations 5.2 Equations Reducible to Separable Equations 5.3 Linear Equations of the First Order 5.4 Linear Equations of Order Higher than the First with Constant Coefficients 5.5 Euler Equations 5.6 Envelopes and Differential Equations 5.7 Various Exercises 5.8 Selected Exercises | 56
57
59
61
61
63
64 | | | | | 6. | Bibliographical Notes | 75 | | | | | | | Page | |-------------|--|--|----------------------------------| | CHAPTER II | LINEAR SYSTEMS | | 79 | | | 1.2 Linear Op
1.3 Canonical | and Eigenvalues
erators Between Banach Spaces
Form of Matrices
and Eigenvalues of a Linear | 79
79
84
88
93
94 | | | 2.1 Formal So
2.2 Fundament
Adjoint S | of Ordinary Differential Equations
clution of Linear Systems
cal Systems of Solutions and
Systems
eneous Systems | 97
97
99
102 | | | the state of s | lculus
Functions of Operators
stems with Constant Coefficients | 103
103
110 | | | 4.1 Homogened
Equations | Differences Equations
ous Linear Finite Differences
eneous Linear Finite Differences | 118
118 | | | Equations | | 124 | | | 5. Examples | | 124 | | | 6. Bibliography | | 131 | | CHAPTER III | EXISTENCE AND UNIC | UENESS FOR THE CAUCHY PROBLEM
ON OF CONTINUITY | 132 | | | | rem
rization of Compact Sets of
s Functions: Ascoli's Theorem | 133
133 | | | 1.2 Local Exi | stence | 140
146 | | | | tion of all Solutions to a Given | 155 | | | Cauchy Programmed 2.2 Maximal and Phano Phano | nd Minimal Solutions. The | 156
159 | | | 2.4 Maximal S | Phenomenon for Systems Colutions, Differential Inequalities, at Existence | 162
168 | | | | s Dependence
s Theorems
Differential Equations Have the | 171
171
178 | | | 4. Elements of G-
4.1 Introduct | ion | 183
187
187 | | | 0.22 | | 187
189
196 | | | the state of s | ence and the Peano Phenomenon | 198 | | | 5. Bibliographica | 1 Notes | 200 | eÿ. | | | | | Page | |------------|-----|--------|---|------------| | CHAPTER IV | BOU | INDARY | VALUE PROBLEMS | 207 | | | 1. | | inuous Mappings on Euclidean Spaces | 207 | | | | | The Topological Degree | 208 | | | | | The Theorems of Brouwer and Miranda | 213 | | | 2. | | etric Boundary Value Problems The Boundary Value Problems of Picard and | 217 | | | | 2.2 | Nicoletti
A Geometrical Formulation of the Boundary | 217 | | | | | Value Problem Some Applications of the Geometric | 224 | | | | | Formulation | 233 | | | 3. | | n-Liouville Problems: Eigenvalues and | | | | | | tence and Uniqueness Theorems | 236 | | | | | Eigenvalues and Eigenfunctions | 236 | | | | | Prüfer's Change of Variables | 239 | | | | 3.4 | Existence and Properties of the Eigenvalues Applications to Questions of Uniqueness for | 247 | | | | | Problems Involving Nonlinear Equations | 251 | | | | 3.5 | Application to the Existence of Solutions | 054 | | | | 3.6 | for Problems Involving Nonlinear Equations
Further Properties of Eigenvalues and | 254 | | | | | Eigenfunctions | 261 | | | 4. | Perio | odic Solutions | 265 | | | | 4.1 | The Case of First Order Equations | 265 | | | | | The Case of Second Order Equations | 268 | | | | | The Case of Systems | 272 | | | | | On the Structure of Periodic Solutions | 279 | | | 5. | | ional Boundary Value Problems | 284 | | | | A-2-2 | Linear Functional Problems | 286 | | | 6. | | Nonlinear Functional Problems
Lographical Notes | 296
299 | | CUADTED V | | | | | | CHAPTER V | QUE | | OF STABILITY | 311 | | | 1. | | lity of the Solutions of Linear Systems | 312 | | | | | Definition of Stability | 312 | | | | | Stability for Autonomous Linear Systems | 314 | | | | | Autonomous Linear Systems of the Second Order
Certain Stability Problems for Nonautonomous | 317 | | | | | Linear Systems | 325 | | | 2. | Some | Methods for the Determination of the Stability | | | | | 100 | nlinear Systems | 332 | | | | 2.1 | Definitions | 332 | | | | | Liapunov's Method | 337 | | | | 2.3 | The Fixed Point Method: Asymptotic | | | | | 2.4 | Equivalence | 346 | | | | | Olech's Method | 352 | | | | 1.000 | The Method of the Logarithmic Norm | 358
361 | | | _ | | Invariant Sets | | | | 3. | | Applications | 365 | | | | | Problems in Biology and Chemistry Problems in Automatic Control Theory | 365
370 | | | | 3.2 | Problems in Automatic Control Theory | 370 | | | | Page | | | |-----------|---|------|--|--| | CHAPTER V | (cont.) | | | | | | 4. The Method of Runge and Kutta | 373 | | | | | 4.1 The Fourth Order Runge-Kutta Algorithm | 374 | | | | | 4.2 Practical Use of the Runge-Kutta Method | 376 | | | | | 5. Bibliographical Notes | 378 | | | | INDEX | | 382 | | | <u>1</u>€ 9 * E * \$4.00 ***