

CONTENTS

Edite	r's F	reface	1X
Fore	word		xi
Intro	ducti	on: Historical Review	xv
	I.	THE OPERATORS OF MATHEMATICAL PHYSICS	
	§ 1.	The formulation of the basic problems	1
	§ 2.	Some ancillary concepts and formulae	6
	§ 3.	The scalar product of functions	12
	§ 4.	The concepts of operator and of functional	20
		Symmetric operators	25
	§ 6.	Positive definite and positive-bounded-below operators	31
		II. ENERGY CONVERGENCE	
	§ 7.	The estimation of the error of an approximation and the	
		nature of its convergence. Convergence in the mean	40
	§ 8.	Energy convergence	51
	§ 9.	The linear independence of functions	56
() (2) (3) (3)	§ 10.	Orthogonality and orthogonal series	59
		III. THE ENERGY METHOD	
	§ 11.	The minimum functional theorem	74
	§ 12.	Representation of a solution in the form of an orthogonal	80
i i	. 19	Beries The minimizing accurance and its contrargance	83
	T	The minimizing sequence and its convergence. The Ritz method	85
100	- 1 Maria	Other methods of constructing the minimizing sequence	95
		Functions with finite energy	100
	7.0	The applications of functions with finite energy. Natural	
•	3	boundary conditions	109
	8 18	Non-homogeneous boundary conditions	116
	VA. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	The existence of a solution of the variational problem	121
	IV.	MAJOR APPLICATIONS OF THE ENERGY METHOD	
	§ 20.	Boundary value problems for an ordinary differential	
·	W1 17	equation	126
	§ 21.	Bending of a beam of variable cross-section, resting on	Section and section
		an elastic foundation	136

	§	22.	Fundamental boundary value problems for the equat-	
			ions of Poisson and Laplace	138
	§	23.	Problems of torsion of a bar and of bending of a beam by	
			a lateral force	151
	•		Equations with variable coefficients	160
	§	25.	Degenerate elliptic equations; the Chaplygin equation	167
	§	26.	The principle of minimum of potential energy in elasti-	
	•		city theory	175
	Ş	27.	The bending of thin plates	182
	•		The bending of thin plates to which both normal loads	
	•		and loads acting in the central plane are applied	200
			V. THE EIGENVALUE PROBLEM	
	2	90	The eigenvalue problem; its connexion with characteristic	
	3	40.	vibrations and stability of a system	207
	2	20	Eigenvalues and eigenfunctions of a symmetric operator	213
	2.50		Energy theorems in the eigenvalue problem	218
	•		Ritz's method for the eigenvalue problem	226
	•			440
	3	33.	Another form of Ritz's method; the case of natural	233
	•		boundary conditions	236
	11.		Equations of the form $Au-\lambda Bu=0$	239
			The eigenvalues of an ordinary differential equation	
	•		The stability of a compressed rod	250
	•		Eigenvalues of elliptic operators	253
	1000		The stability of a compressed plate	262
	•		The characteristic vibrations of an elastic body	265
	§	40.	The minimax principle and its implications	270
	7	VI.	GENERALIZATION OF THE PRECEDING RESULTS	
	8	41.	The concept of Lebesgue integral	278
	_		Functional Hilbert spaces	287
	_		The limit process in Hilbert spaces	295
	•		Generalization of the concept of orthogonality	300
			General definitions of functional and operator	308
121	8	46	The general formulation of the variational problem and its	
	3	40.	solution	318
	§	47.	The method of minimum surface integrals	328
				TON:
VII.	E	STI	MATES OF THE ERROR OF AN APPROXIMATE SOLUT	TOW
	~		General remarks	332
			Subspaces and projections	335
			The method of orthogonal projections in Dirichlet's	
	•		problem	339
	Ş	51.	General formulation of the method of orthogonal project-	
	•		ions	345

		CONTENTS	Vii
§		Some additional considerations	350
_		The Neumann problem	352
§	54.	Castigliano's principle and two-sided estimates in elasti-	
		city theory	355
		Trefftz's method	359
§	56.	The biharmonic equation. The method of anharmonic	KUZI C'HI YAN UNIV
		residue	365
§	57.	Generalization of Trefftz's method	369
9.200		Application to Poisson's equation	371
§	59.	Generalization of Trefftz's method to the problem of a	
		freely supported plate	375
§	60 .	The method of M. G. Slobodyansky	380
§	61.	Upper and lower bounds for functionals	383
§		Upper and lower bounds of eigenvalues	385
§	63.	Estimate of the error due to a perturbation of the equation	391
		VIII. NUMERICAL EXAMPLES	
§	64.	On coordinate functions	395
§		The torsion of a rod of rectangular cross-section	402
§		Bending of a rectangular plate, rigidly fixed at the rim	413
		Bending of semicircular plate elastically supported at the rim	419
§	68.	Evaluation of the eigenvalues of an ordinary second-	
		order differential equation	423
§	69.	Eigenvibrations of a beam of variable cross-section	427
		Radial eigenvibrations of an elastic cylinder	435
		Plane vibrations of an elastic rectangular plate	440
8	72.	Stability of a compressed elliptic plate	445
		IX. THE BUBNOV-GALERKIN METHOD	
8	73.	Foundations of the method	448
		Proof of convergence for Fredholm integral equations	450
		Proof of convergence for ordinary second-order differential	
<u></u>		equations	455
Ş	76.	Completely continuous operators	459
7.00		Equations involving a completely continuous operator	462
		A sufficient criterion for the convergence of the Bubnov-	H R
J		Galerkin method	469
8	79.	Application to ordinary differential equations	477
		The Dirichlet problem for a second-order elliptic equation	480
75		The Neumann problem and the mixed problem for a	samo TRES
		second-order elliptic equation	488
§	82.	Modification of the Bubnov-Galerkin method for the case	
		of natural boundary conditions	489

⊵₹((

CONTENTS

X. THE METHOD OF LEAST SQUARES

	§	83.	Basis of the method	491
	§	84.	Application to integral equations	499
	§	85.	Application to boundary value problems with homo-	
	30 1		geneous boundary conditions	503
	§	86.	Auxiliary theorems of the theory of analytic functions	504
	§	87.	The Dirichlet and Neumann problems	509
	§	88.	The Dirichlet problem for an ellipse	514
	8	89.	The case of a piecewise smooth contour. The Dirichlet	
	in:		problem	515
	§	90.	The mixed problem of potential theory	518
	§	91.	The plane problem of elasticity theory	526
	100		The periodic problem of elasticity theory	530
	§	93.	Stress in an elastic space bounded by a sine curve	538
			XI. FINITE DIFFERENCE METHODS	
	§	94.	The method of networks	544
	§	95.	Foundations of the method of straight lines	549
	8	96.	Differential equations of the method of straight lines for	
			the equations of Poisson and Laplace	551
			The case of a trapezoidal domain	554
	§	98.	Differential equations of the method of straight lines for	
	A170		the biharmonic equation	563
Bibli	io	grap	hy	567
	ndex			
				ا ا
List	0	Vo	lumes in the Series in Pure and Applied Mathematics	583

