CONTENTS | Introduction | 1 | |--|----------------| | Part I. Differential equations of the hyperbolic type | | | Chapter I. Methods of finding the general solution to equations of the | 4 4 | | hyperbolic type | 19 | | 1. General remarks. Examples 2. The Euler-Darboux equation | 19
24 | | Chapter II. The Cauchy problem on a plane | 31 | | 1. The Cauchy problem and its solution by the Riemann method 2. Examples of applications of Riemann's method | 31
35 | | Chapter III. The application of the method of characteristics to the study of low-amplitude vibrations of a string | 42 | | 1. Derivation of the equation for the vibrations of a string | 42 | | 2. Vibrations of a homogeneous infinite string | 45 | | 3. Vibrations of a string fixed at both ends | 3 5 | | 4. A property of the characteristics | 53 | | 5. Wave reflection in a fastened string | 54 | | 6. The concept of generalized solutions | 55 | | Chapter IV. Longitudinal vibrations of a rod | 59 | | 1. The differential equation for longitudinal vibrations of a homogeneous rod of constant cross section. The initial and | | | boundary conditions | 59 | | 2. The vibrations of a rod with one end fixed | 61 | | 3. Axial impact on a rod | 64 | | Chapter V. Application of the method of characteristics to the study of electrical vibrations in conductors | 70 | | 1. Differential equations for free electrical oscillations | 70 | | 2. The telegraph equation | 71 | | 3. Integration of the telegraph equation by the Riemann method | 72 | | 4. Electrical oscillations in an infinite conductor | 74 | | 5. Oscillations in a line that is free of distortion | 76 | | 6. Boundary conditions for a conductor of finite length | 78 | ## CONTENTS | Chapter VI. The wave equation | 80 | |---|----------| | 1. The differential equation for transverse vibrations of a membrane | 80 | | 2. The hydrodynamic equations and the propagation of sound | -00 | | waves | 82 | | 3. Poisson's formula | 87
90 | | 4. The propagation of sound waves in space | 92 | | 5. Cylindrical waves
6. Plane waves | 93 | | 7. Spherical waves | 95 | | 8. The inhomogeneous wave equation | 100 | | 9. A uniqueness theorem | 103 | | Chapter VII. Functionally invariant solutions | 106 | | 1. Functionally invariant solutions to equations of the hyper- | | | bolic type with two independent variables | 106 | | 2. Functionally invariant solutions to the wave equation | 111 | | 3. The problem of reflection of plane elastic waves | 113 | | Chapter VIII. Application of the Fourier method to the study of free | | | vibrations of strings and rods | 117 | | 1. The Fourier method for the equation of free vibrations of a | | | string | 117 | | 2. The vibration of a plucked string | 122 | | 3. The vibrations of a struck string | 123 | | 4. Longitudinal vibrations of a rod | 123 | | 5. The general plan of the Fourier method | 126 | | Chapter IX. Forced vibrations of strings and rods | 134 | | 1. Forced vibrations of a string that is fixed at the ends 2. Forced vibrations of a string under the action of a concen- | 134 | | trated force | 137 | | 3. Forced vibrations of a heavy rod | 139 | | 4. Forced vibrations of a string with moving ends | 141 | | 5. The uniqueness of the solution to a mixed problem | 144 | | Chapter X. Torsional vibrations of a homogeneous rod | 147 | | 1. The differential equation for torsional vibrations of a cylind- | 1 477 | | rical rod The wibrotions of a rod with factored dick | 147 | | 2. The vibrations of a rod with fastened disk | 149 | | Chapter XI. Electric oscillations in lines | 156 | | 1. Transient phenomena in electric lines | 156 | | 2. Steady-state processes following the application of a voltage | 156 | | CONTENTS | Xi | |--|---------------------------------| | Chapter XII. Bessel functions | 161 | | Bessel's equation Certain particular cases of Bessel functions The orthogonality of the Bessel functions and the roots of these functions The expansion of an arbitrary function in a series of Bessel functions | 161
165
166 | | 5. Some integral representations of the Bessel functions6. Hankel's functions7. Bessel's functions with imaginary argument | 172
175
176 | | Chapter XIII. Small-amplitude vibrations of a thread suspended from one end | 180 | | The free vibrations of a suspended thread Forced vibrations of a suspended thread | 180
183 | | Chapter XIV. Small-amplitude radial vibrations of a gas | 190 | | Radial vibrations of a gas in a sphere The radial vibrations of a gas in an infinite cylindrical tube | 190
195 | | Chapter XV. Legendre polynomials | 201 | | Legendre's differential equation The orthogonality of the Legendre polynomials and their norm | 201 | | Certain properties of Legendre polynomials Integral representations of Legendre polynomials The generating function Recursion formulae relating the Legendre polynomials and their derivatives Legendre functions of the second kind | 205
206
208
209
210 | | 8. Small-amplitude vibrations of a rotating string | 210 | | Chapter XVI. The application of the Fourier method to the study of small-amplitude vibrations of rectangular and circular membranes | 216 | | Free vibrations of a rectangular membrane Free vibrations of a circular membrane | 216
220 | | Part II. Differential equations of the elliptic type | | | Chapter XVII. Integral formulae that are applicable to the theory of differential equations of the elliptic type | 231 | | 1. Definitions and notations | 231 | | The Ostrogradskii-Gauss formula and the Green theorem Transformation of Green's theorem | 233
237 | | 4. Lévy's functions | 238 | | 5. The Green-Stokes theorem | 242 | . | | The Green-Stokes theorem for two dimensions Representation of certain differential expressions in ortho- | 246 | |-----------------|---|-----| | | gonal coordinate systems | 247 | | Chapte | r XVIII. Laplace and Poisson equations | 256 | | 1. | Laplace and Poisson equations. Examples of problems lead- | 050 | | ∂7 <u>226</u> 3 | ing to the Laplace equations | 256 | | | Boundary-value problems | 262 | | | Harmonic functions | 264 | | 2.3 | Uniqueness of the solutions to boundary-value problems
Fundamental solutions to Laplace's equation. The basic for- | 269 | | | mula in the theory of harmonic functions | 274 | | 6. | Poisson's formula. The solution to Dirichlet's problem for a sphere | 280 | | 7. | Green's function | 283 | | | Harmonic functions in the plane | 288 | | Chapte | r XIX. Potential theory | 294 | | 1. | Newtonian potential | 294 | | 2. | Potentials of different orders | 296 | | | Multipoles | 299 | | | Analysis of /a potential in terms of multipoles. Spherical functions | 302 | | 5 | The potentials of single and double layers | 306 | | | Lyapunov surfaces | 307 | | | The convergence and the continuous dependence of improper | | | | integrals on parameters | 310 | | 8. | The behaviour of a single-layer potential and of its normal derivatives upon crossing the layer | 313 | | 0* | The tangential derivatives of the single-layer potential and | 010 | | 9 | its derivatives in an arbitrary direction | 317 | | 10 | The behaviour of the double-layer potential when the layer is | OII | | 10. | crossed | 323 | | Chapte | r XX. Elements of the theory of logarithmic potential | 325 | | 1 | Logarithmic potential | 325 | | | | 327 | | | The double-layer logarithmic potential Discontinuity in the normal derivative of the logarithmic po- | 341 | | | tential on a curve | 330 | | 4. | The logarithmic potential of masses distributed over an area | 331 | | Chapte | r XXI. Spherical functions | 333 | | 1. | The construction of a system of linearly independent spheri-
cal functions | 333 | | 2. | The orthogonality of spherical functions | 337 | | | Expansions in spherical functions | 339 | | | The use of spherical functions for solving boundary problems | 343 | | | Green's function of the Dirichlet problem for a sphere | 345 | | | Green's function for the Neumann problem for a sphere | 348 | | CONTENTS | xiii | |--|--------------------------| | Chapter XXII. Several questions on gravimetry and the theory of the shape of the earth | 352 | | Equipotential distributions The energy of a gravitational field. Gauss' problem Gravitational fields. Stokes' theorem The basic gravimetric problem The solution of the basic problem of gravimetry by Green's method | 352
355
358
362 | | Chapter XXIII. Application of the theory of spherical functions to the solution of problems in mathematical physics | 369 | | The electrostatic potential of a conducting sphere divided into two hemispheres by a dielectric layer The problem of steady-state temperature in a sphere The problem of charge distribution on an inductively charged sphere The flow of an incompressible liquid around a sphere | 369
371
373
377 | | Chapter XXIV. Gravity waves on the surface of a liquid | 381 | | Statement of the problem Two-dimensional waves in a basin of finite depth Annular waves Stationary phase method | 381
384
390
393 | | Chapter XXV. The Helmholtz equation | 398 | | The connection between the Helmholtz equation and certain hyperbolic and parabolic operations Spherical symmetrical solutions to the Helmholtz equation in a bounded region Eigenvalues and eigenfunctions of a general boundary-value problem. Expansions in eigenfunctions The separation of variables in the Helmholtz equation in cylindrical and spherical coordinates | 398
400
406
411 | | 5. Spherically symmetric solutions of the Helmholtz equation in an infinite region 6. Integral formulae 7. Series expansions in particular solutions of the Helmholtz equation in an infinite region 8* Questions concerning the uniqueness of solutions to the external boundary-value problems for the Helmholtz equation | 416
422
428
431 | | Chapter XXVI. The emission and scattering of sound | 435 | | The fundamental relationships for sound fields The acoustic field of a vibrating cylinder The acoustic field of a pulsating sphere. Point sources Emission from an opening in a plane wall The acoustic field due to arbitrary oscillation of the surface of a sphere | 435
436
439
441 | . | o. Investigation of the field of a sphere with arbitrary vibration | | |--|-----| | of its surface. Acoustic or vibrational multipoles | 447 | | 7. The scattering of sound | 452 | | | | | Chapter XXVII*. Comments on questions of the elliptic type in the | | | general form | 456 | | 1. The general form of equations of the elliptic type | 456 | | | 457 | | 2. The basic boundary-value problem | | | 3. Conjugate boundary-value problems | 458 | | 4. Fundamental solutions. Green's function | 459 | | 5. Uniqueness theorem | 462 | | 6. Conditions of solubility of boundary-value problems | 464 | | Part III. Equations of the parabolic type | | | Obantan VVIIII Oba minumlast mashlana landina ta tha bast flow | | | Chapter XXVIII. The simplest problems leading to the heat-flow equation. Some general theorems | 471 | | 1. The heat-flow equation in an isotropic body. Initial and boun- | | | dary conditions | 471 | | 2. The diffusion equation | 474 | | | 475 | | 3. The heat-flow equation in a torus | 710 | | 4. An extreme-value theorem. The uniqueness of the solution to | 477 | | the first boundary-value problem | | | 5. The uniqueness of the solution to the Cauchy problem | 479 | | Chapter XXIX. Heat-flow in an infinite rod | 480 | | 1. Heat-flow in an infinite rod | 480 | | 2. Heat-flow in a semi-infinite rod | 487 | | THE REST RESTRICTED AND ADDRESS OF A SECOND PROPERTY OF THE PERMINENT AND ADDRESS PERMI | | | Chapter XXX. The application of the Fourier method to the solution | 400 | | of boundary-value problems | 492 | | 1. Heat-flow in a finite rod | 492 | | 2. The inhomogeneous heat-flow equation | 498 | | 3. Heat-flow in an infinite cylinder | 501 | | THE REPORT OF THE PROPERTY | 507 | | 4. Heat-flow in a cylinder of finite dimensions | | | 5. Heat-flow in a homogeneous sphere | 509 | | 6. Heat-flow in a rectangular plate | 515 | | Part IV. Supplementary material | | | Chapter XXXI. The use of integral operators in solving problems in | | | mathematical physics | 522 | | 1 Regia definitions Mathed of emplication of intermal exerctors | 522 | | 1. Basic definitions. Method of application of integral operators | 522 | | 2. Conditions allowing the use of integral operators | | | 3. Finite integral transformations | 525 | | 4. Integral transformations in infinite intervals | 530 | | 5. Summary of the results | 537 | | XV | |----| | | | Chapter XXXII. Examples of the application of finite integral trans- | | |--|--| | formations | 542 | | 1. Vibrations of a heavy thread | 542 | | 2. Vibrations of a membrane | 545 | | 3. Heat-flow in a cylindrical rod | 548 | | 4. Heat-flow in a circular tube | 553 | | 5. Heat-flow in a sphere | 555 | | 6. Steady-state heat-flow in a parallelepipeo | 559 | | Chapter XXXIII. Examples of the application of integral transforma- | | | tions with infinite limits | 563 | | 1. The problem of the vibrations of an infinitely long string | 563 | | 2. Linear heat-flow in a semi-infinite rod | 565 | | 3. The distribution of heat in a cylindrical rod whose surface is | | | kept at two different temperatures | 567 | | 4. The steady thermal state of an infinite wedge | 570 | | Chapter XXXIV. Maxwell's equations | 574 | | 1. The system of Maxwell's equations | E 77 / | | 2. Electromagnetic field potentials | 574 | | | 578 | | 3. Boundary conditions | 581 | | 4. Representation of an electromagnetic field by means of two | = 0.0 | | scalar functions | 588 | | 5* A uniqueness theorem | 591 | | Chapter XXXV. Emission of electromagnetic waves | 596 | | 1. General remarks | 596 | | 2. A vertical emitter in a homogeneous medium over an ideally | | | conducting plane | 598 | | 3. A vertical emitter in a homogeneous medium over a sphere | 000 | | of finite conductivity | 603 | | 4. A magnetic antenna over a medium of finite conductivity | 605 | | 5. The field of an arbitrary system of emitters | 612 | | 6. A horizontal emitter over a medium of finite conductivity | 614 | | The second secon | 011 | | Chapter XXXVI. Directed electromagnetic waves | 621 | | 1. Transverse electric, transverse magnetic, and transverse | | | electromagnetic waves | 621 | | 2. Waves between ideally conducting planes separated by a di- | 2 <u>14</u> (2 <u>42</u> 7) <u>34</u> (2 | | electric | 622 | | 3. Further examination of directed waves | 627 | | 4. TM wave in a waveguide of circular cross section | 635 | | 5. TE waves in a waveguide of circular cross section | 637 | | 6. Waves in a coaxial cable | 638 | | 7. Waves in a dielectric rod | 640 | Na. ## CONTENTS | Chapter XXXVII. Electromagnetic horns and resonators | 647 | |---|---| | Sectorial horns and resonators Spherical resonators | 647
651 | | Chapter XXXVIII. Motion of a viscous fluid | 653 | | Equations of motion of a viscous fluid Motion of a viscous fluid in the space over a rotating disk of infinite radius | 653
658 | | 3. Motion of a viscous fluid in a plane diffuser | 660 | | Chapter XXXIX*. Generalized functions | 665 | | Introduction Generalized functions Properties of fundamental and generalized functions. The most important operations on generalized functions Differentiation of generalized functions. The concept of generalized solutions of differential equations The Dirac delta function Convolutions of generalized functions The concept of fundamental solutions The concept of a generalized Fourier transform | 665
666
675
679
681
686
692 | | References | 700 |