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Concepts related to nonlinear dynamics: historical outline

1 In the beginning...

1.1 ...there was Poincare

1.2 What are ‘nonlinear phenomena’?; projections, models, and some relationships
between linear and nonlinear differential equation

1.3 Two myths: a linear and analytic myth'

1.4 Remarks on modeling: pure mathematics vis a vis ‘empirical’ mathematics

1.5 The ordering and organization of ideas: dynamic dimensions, continuous and
discrete variables; the analytic, qualitative, computational, and experimental
approaches to nonlinear dynamics; Sneaking up on the complexity of dynamics

1.6 Some thoughts: Albert Einstein, Victor Hugo, A.B. Pippard, Richard Feynman,
Henri Poincaré

Comments on exercises

2 A potpourri of basic concepts

2.1 Dynamic equations; topological orbital equivalence:
x=F(x,t;c) (xeR",ceR"

Autonomous and nonautonomous systems; phase space (x); control parameter
space (c); Hamiltonian systems; gradient systems; phase portraits; topological
orbital equivalence; manifolds “

2.2 Existence, uniqueness and constants of the motion: Lipschitz condition; universal
differential equations; Wintner’s condition; general solution; singular (fixed)
points; dynamics viewed as diffefomorphism; constants (integrals) of the motion,
numbers and types; the implicit function theorem; obtaining time-independent
integrals; isolating integrals

2.3 Types of stabilities: Lyapunov, Poincaré, Lagrange; Lyapunov exponents; global
stability; the Lyapunov function

2.4 Integral invariants: the Poincaré integral invariants; generalized Liouville
theorem:; unbounded solutions, Liouville theorem on integral manifolds
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2.5 More abstract dynamic systems: classic dynamic systems; flows and orbits in phase
space; Poincaré’s recurrence theorems; the Poincaré map; first-return map;
area-preserving maps; maps and difference equations

Xer1=F(xgc) (k=1,2,...;xeR™ ceR")

2.6 Dimensions and measures of sets: capacity and information dimensions; self-similar
sets; Cantor sets; fractal structures; thin and fat Cantor sets; measure vs.

dimension. Some physical ‘fractals’
Comments on exercises

3 First order differential systems (n = 1)
3.1 Selected dynamic aspects: classic examples; Riccati equations and linear second

order d.e.; the logistic and Landau equations; nonlinear superpositions; integrat-
ing factors; singular solutions and caustics

3.2 Control space effects. simple bifurcations: definition of a bifurcation; ‘dynamic
phase transitions’; fixed point bifurcations and the implicit function theorem,
singular points, double points, the exchange of stability, Euler strut, imperfect
bifurcation; hysteresis, a discharge tube; simple laser model

3.3 Structural stability, gradient systems and elementary catastrophe sets

3.4 Thom’s ‘universal unfolding’ and general theorem (for k < 5): Brief summary

3.5 Catastrophe machines: Poston’s (k = 1); Benjamin’s (k = 1); Zeeman’s (k 2)

3.6 The optical bistability cusp catastrophe set

3.7 Some of René Thom’s perspectives

Comments on exercises

4 Models based on first order difference equations

4.1 General considerations:

Xn+1 = F(x,; ¢) (mappings’)

4.2 Two-to-one maps: the logistic map: possible connections with differential equ-
ations, and differences the logistic map, x,, . ; = ¢ x,(1 — x,); Schwarzian maps; tent
maps; fixed points, periodic and eventually periodic points; Criterion for stable
periodic points; sequence of period 2" bifurcations; an attracting Cantor set;
superstable cycles -

4.3 Universal sequences and scalings: the U-sequence of Metropolis, Stein and Stein;
qualitative ‘universality’; Feigenbaum’s quantitative ‘universality’ and scaling;
aperiodic solutions, reverse bifurcation; Sharkovsky’s theorem

4.4 Tangent bifurcations, intermittencies: windows, microcosms, Crisis

- 4.5 Characterizing ‘deterministic chaos’: partitioning phase space; correspondence
with Bernoulli sequences; Li—Yorke characterization of chaos; other
characterizations ' '

4.6 Lyapunov exponents. sensitivity to initial condltlon vs. attractors; a strange
attractor concept |

4.7 The dimensions of ‘near self-similar’ cantor sets
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4.8 Invariant measures, mixing and ergodicity: the mixed drinks of Arnold, Avez, and
Halmos
49 The circle map: model of coupled oscillators; rotation number, entrainment,
Arnold ‘tongues’; chaotic region
4.10 The ‘suspension’ of a tent map
4.11 Mathematics, computations and empirical sciences; THE FINITE vs. THE
INFINITE; pseudo-orbits, f-shadowing; discrete logistic map, where is the
chaos?
Comments on exercises

5 Second order differential systems (n = 2)

5.1 The phase plane: fixed (singular) points: center, nodes, focus, saddlepoint,
classification of (linear) flows near fixed points; hyperbolic point, Lyapunov
theorem, nonlinear modifications, global analysis, limit cycle, separatix

5.2 Integrating factors: a few examples

5.3 Poincaré’s index of a curve in a vector field: Brouwer’s fixed point theorem

* Preview of coming attractionsx

54 The pendulum and polynomial oscillators: elliptic functions, frequency shift,
heteroclinic and homoclinic orbits

5.5 The averaging method of Krylov—Bogoliubov—Mitropolsky (KBM). autonomous
systems; eliminating secular terms, the Duffing equation (passive oscillator)

5.6 The Rayleigh and van der Pol equations: Andronov—Hopf bifurcation: self-exciting
oscillator; limit cycles; the Poincaré—-Bendixson theorem

5.7 The Lotka—Volterra and chemical reaction equations: predator—prey equations,
structurally unstable; one generalization; Lyapunov function

5.8 Relaxation oscillations; singular perturbations: Violin strings, Floppy buckets,

discharge tubes, neurons, Liénard’s phase plane, piecewise linearizations
5.9 Global bifurcations (homoclinics galore!). saddle connection; homoclinic orbit

5.10 Periodically forced passive oscillators: a cusp catastrophe resonance and hysteresis
effect '

5.11 Harmonic excitations: extended phase space: ultraharmonic, subharmonic, and
ultrasubharmonic excitations

5.12 Averaging method for nonautonomous systems (KBM)

5.13 Forced van der Pol equations — frequency entrainment. van der Pol variables,
heterodyning; entrainments of the heat, piano strings, and physiological cir-
cadean pacemakers |

5.14 Nonperturbative forced oscillators: extended phase space; Poincaré first return
(stroboscopic) map; inverted and non-harmonic Duffing equations — chaotic
motion; Kneading action; the Cartwright-Littlewood, Levinson, and Levi
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studies. Shaw’s variant; Ueda’s study; strange attractors; Raty-Isomailei-von
Boehm study; KAM orbits

5.15 Experimental Poincaré (stroboscopic) maps of forced passive oscillators

5.16 Epilogue
Comments on exercises

Appendices
A A brnef glossary of mathematical terms and notation
B Notes on topology, dimensions, measures, embeddings and homotopy
C Integral invariants
D The Schwarzian derivative
E The digraph method
F Elliptic integrals and elliptic functions
G The Poincaré-Bendixson theorem and Birkhoff’s & and w-limit sets
"H A modified fourth-order Runge—Kutta iteration method
I The Stoker—Haag model of relaxation oscillations
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