

Contents of Volume 1

	Preface	ix
	Acknowledgements	xii
	Concepts related to nonlinear dynamics: historical outline	xiii
1	In the beginning	1
1.1	there was Poincaré	1
1.2	What are 'nonlinear phenomena'?; projections, models, and some relationships	
	between linear and nonlinear differential equation	3
1.3	Two myths: a linear and analytic myth	8
	Remarks on modeling: pure mathematics vis à vis 'empirical' mathematics	10
1.5	The ordering and organization of ideas: dynamic dimensions, continuous and	
	discrete variables; the analytic, qualitative, computational, and experimental	
	approaches to nonlinear dynamics; Sneaking up on the complexity of dynamics	12
1.6	Some thoughts: Albert Einstein, Victor Hugo, A.B. Pippard, Richard Feynman,	
	Henri Poincaré	15
	Comments on exercises	16
2	A potpourri of basic concepts	18
		18
	A potpourri of basic concepts	18
	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x, t; c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x); control parameter	18
	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x, t; c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$	18
2.1	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x, t; c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds	18
2.1	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal	18 18
2.1	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed)	18
2.1	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion,	18
2.1	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion, numbers and types; the implicit function theorem; obtaining time-independent	18
2.2	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in R^n, c \in R^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion, numbers and types; the implicit function theorem; obtaining time-independent integrals; isolating integrals	18 30
2.2	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion, numbers and types; the implicit function theorem; obtaining time-independent integrals; isolating integrals Types of stabilities: Lyapunov, Poincaré, Lagrange; Lyapunov exponents; global	
2.2	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion, numbers and types; the implicit function theorem; obtaining time-independent integrals; isolating integrals Types of stabilities: Lyapunov, Poincaré, Lagrange; Lyapunov exponents; global stability; the Lyapunov function	18 30 41
2.2	A potpourri of basic concepts Dynamic equations; topological orbital equivalence: $\dot{x} = F(x,t;c) (x \in \mathbb{R}^n, c \in \mathbb{R}^k)$ Autonomous and nonautonomous systems; phase space (x) ; control parameter space (c) ; Hamiltonian systems; gradient systems; phase portraits; topological orbital equivalence; manifolds Existence, uniqueness and constants of the motion: Lipschitz condition; universal differential equations; Wintner's condition; general solution; singular (fixed) points; dynamics viewed as diffeomorphism; constants (integrals) of the motion, numbers and types; the implicit function theorem; obtaining time-independent integrals; isolating integrals Types of stabilities: Lyapunov, Poincaré, Lagrange; Lyapunov exponents; global	

2.5	More abstract dynamic systems: classic dynamic systems; flows and orbits in phase space; Poincaré's recurrence theorems; the Poincaré map; first-return map; area-preserving maps; maps and difference equations	50
	$x_{k+1} = F(x_k; c)$ $(k = 1, 2,; x \in R^m, c \in R^n)$	
2.6	Dimensions and measures of sets: capacity and information dimensions; self-similar sets; Cantor sets; fractal structures; thin and fat Cantor sets; measure vs.	58
	dimension. Some physical 'fractals'	66
•	Comments on exercises	73
	First order differential systems $(n = 1)$ Selected dynamic aspects: classic examples; Riccati equations and linear second order d.e.; the logistic and Landau equations; nonlinear superpositions; integrating factors; singular solutions and caustics	73 73
3.2	Control space effects: simple bifurcations: definition of a bifurcation; 'dynamic phase transitions'; fixed point bifurcations and the implicit function theorem, singular points, double points, the exchange of stability, Euler strut, imperfect	
	bifurcation; hysteresis, a discharge tube; simple laser model	82
3.3	Structural stability, gradient systems and elementary catastrophe sets	102
3.4	Thom's 'universal unfolding' and general theorem (for $k \le 5$): Brief summary	108
3.5	Catastrophe machines: Poston's $(k = 1)$; Benjamin's $(k = 1)$; Zeeman's $(k = 2)$	118
3.6	The optical bistability cusp catastrophe set	130
3.7	Some of René Thom's perspectives	134
	Comments on exercises	136
4	Models based on first order difference equations	142
	General considerations:	142
	$x_{n+1} = F(x_n; c)$ ('mappings')	
4.2	Two-to-one maps: the logistic map: possible connections with differential equations, and differences the logistic map, $x_{n+1} = c x_n (1 - x_n)$; Schwarzian maps; tent	
	maps; fixed points, periodic and eventually periodic points; Criterion for stable periodic points; sequence of period 2 ⁿ bifurcations; an attracting Cantor set;	
	superstable cycles	148
4.3	Universal sequences and scalings: the U-sequence of Metropolis, Stein and Stein; qualitative 'universality'; Feigenbaum's quantitative 'universality' and scaling;	4 60
	aperiodic solutions, reverse bifurcation; Sharkovsky's theorem	158
	Tangent bifurcations, intermittencies: windows, microcosms, crisis	169
4.5	Characterizing 'deterministic chaos': partitioning phase space; correspondence	
	with Bernoulli sequences; Li-Yorke characterization of chaos; other	172
	characterizations	1/2
4.6	Lyapunov exponents: sensitivity to initial condition vs. attractors; a strange	182
4 ~	attractor concept	102
4./	The dimensions of 'near self-similar' cantor sets	10/

	Contents of Volume 1	vii
4.8	Invariant measures, mixing and ergodicity: the mixed drinks of Arnold, Avez, and Halmos	190
4.9	The circle map: model of coupled oscillators; rotation number, entrainment, Arnold 'tongues'; chaotic region	197
	The 'suspension' of a tent map Mathematics, computations and empirical sciences; THE FINITE vs. THE INFINITE; pseudo-orbits, β -shadowing; discrete logistic map, where is the	206
	chaos?	210
	Comments on exercises	219
	Second order differential systems $(n = 2)$ The phase plane: fixed (singular) points: center, nodes, focus, saddlepoint, classification of (linear) flows near fixed points; hyperbolic point, Lyapunov	226
5.2	theorem, nonlinear modifications, global analysis, limit cycle, separatix Integrating factors: a few examples	226 240
	Poincaré's index of a curve in a vector field: Brouwer's fixed point theorem	243
	Preview of coming attractions	251
5.4	The pendulum and polynomial oscillators: elliptic functions, frequency shift, heteroclinic and homoclinic orbits	253
	The averaging method of Krylov-Bogoliubov-Mitropolsky (KBM): autonomous systems; eliminating secular terms, the Duffing equation (passive oscillator)	264
	The Rayleigh and van der Pol equations: Andronov-Hopf bifurcation: self-exciting oscillator; limit cycles; the Poincaré-Bendixson theorem	271
	The Lotka-Volterra and chemical reaction equations: predator-prey equations, structurally unstable; one generalization; Lyapunov function	283
5.8	Relaxation oscillations; singular perturbations: Violin strings, Floppy buckets, discharge tubes, neurons, Liénard's phase plane, piecewise linearizations	288
5.9	Global bifurcations (homoclinics galore!): saddle connection; homoclinic orbit	300
	Periodically forced passive oscillators: a cusp catastrophe resonance and hysteresis effect	308
5.11	Harmonic excitations: extended phase space: ultraharmonic, subharmonic, and	99
	ultrasubharmonic excitations	314
	Averaging method for nonautonomous systems (KBM)	319
5.13	Forced van der Pol equations – frequency entrainment: van der Pol variables, heterodyning; entrainments of the heat, piano strings, and physiological cir-	322
5.14	Nonperturbative forced oscillators: extended phase space; Poincaré first return (stroboscopic) map; inverted and non-harmonic Duffing equations – chaotic motion; Kneading action; the Cartwright-Littlewood, Levinson, and Levi	322

Contents of Volume 1

	studies. Shaw's variant; Ueda's study; strange attractors; Räty-Isomälei-von	
	Boehm study; KAM orbits	329
5.15	Experimental Poincaré (stroboscopic) maps of forced passive oscillators	356
5.16	Epilogue	365
	Comments on exercises	365
	Appendices	
A	A brief glossary of mathematical terms and notation	376
В	Notes on topology, dimensions, measures, embeddings and homotopy	382
C	Integral invariants	393
D	The Schwarzian derivative	396
E	The digraph method	400
F	Elliptic integrals and elliptic functions	404
G	The Poincaré-Bendixson theorem and Birkhoff's α and ω -limit sets	409
H	A modified fourth-order Runge-Kutta iteration method	414
I	The Stoker-Haag model of relaxation oscillations	416
	Bibliography	421
	References by topics	453
	Index	490

