Contents

	Preface	ix	
CHAPTER 1	FIRST EXAMPLES		
	1. The Simplest Examples	1	
	2. Linear Systems with Constant Coefficients	9	
	Notes	13	
CHAPTER 2	NEWTON'S EQUATION AND KEPLER'S LAW		
	1. Harmonic Oscillators	15	
33 33	2. Some Calculus Background	16	
	3. Conservative Force Fields	17	
	4. Central Force Fields	19	
	5. States	22	
	6. Elliptical Planetary Orbits	23	
	Notes	27	
CHAPTER 3	LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS AND REAL EIGENVALUES		
	1. Basic Linear Algebra	29	
	2. Real Eigenvalues	42	
	3. Differential Equations with Real, Distinct Eigenvalues	47	
	4. Complex Eigenvalues	55	
CHAPTER 4	LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS AND COMPLEX EIGENVALUES		
	1. Complex Vector Spaces	62	
	2. Real Operators with Complex Eigenvalues	66	
	3. Application of Complex Linear Algebra to Differential Equations	69	
CHAPTER 5	LINEAR SYSTEMS AND EXPONENTIALS OF OPERATORS		
*;	1. Review of Topology in R ⁿ	75	
89	2. New Norms for Old	77	
	3. Exponentials of Operators	82	
	4. Homogeneous Linear Systems	89	
	5. A Nonhomogeneous Equation	99	
	6. Higher Order Systems	102	
	Notes	108	

CHAPTER 6	LINEAR SYSTEMS AND CANONICAL FORMS OF OPERATORS			
	1. The Primary Decomposition	110		
	2. The $S + N$ Decomposition	116		
	3. Nilpotent Canonical Forms	122		
	4. Jordan and Real Canonical Forms	126		
	5. Canonical Forms and Differential Equations	133		
	6. Higher Order Linear Equations	138		
	7. Operators on Function Spaces	142		
CHAPTER 7	CONTRACTIONS AND GENERIC PROPERTIES OF OPERATORS			
	1. Sinks and Sources	144		
	2. Hyperbolic Flows	150		
	3. Generic Properties of Operators	153		
	4. The Significance of Genericity	158		
CHAPTER 8	FUNDAMENTAL THEORY			
	1. Dynamical Systems and Vector Fields	159		
	2. The Fundamental Theorem	161		
	3. Existence and Uniqueness	163		
	4. Continuity of Solutions in Initial Conditions	169		
	5. On Extending Solutions	171		
	6. Global Solutions	173		
	7. The Flow of a Differential Equation	174		
	Notes	178		
CHAPTER 9	STABILITY OF EQUILIBRIA			
	1. Nonlinear Sinks	180		
	2. Stability	185		
50	3. Liapunov Functions	192		
	4. Gradient Systems	199		
	5. Gradients and Inner Products	204		
	Notes	209		
CHAPTER 10	DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS			
	1. An RLC Circuit	211		
	2. Analysis of the Circuit Equations	215		
*)	3. Van der Pol's Equation	217		
	4. Hopf Bifurcation	227		
	5. More General Circuit Equations	228		
	Notes	238		
CHAPTER 11	THE POINCARÉ-BENDIXSON THEOREM			
	1. Limit Sets	239		
	2. Local Sections and Flow Boxes	242		
	3. Monotone Sequences in Planar Dynamical Systems	244		

CONTENTS		vii	
	 The Poincaré-Bendixson Theorem Applications of the Poincaré-Bendixson Theorem Notes 	248 250 254	
CHAPTER 12	ECOLOGY		
	 One Species Predator and Prey Competing Species Notes 	255 258 265 274	
CHAPTER 13	PERIODIC ATTRACTORS		
	 Asymptotic Stability of Closed Orbits Discrete Dynamical Systems Stability and Closed Orbits 	276 278 281	
CHAPTER 14	CLASSICAL MECHANICS		
	 The n-Body Problem Hamiltonian Mechanics Notes 	287 290 295	
CHAPTER 15	NONAUTONOMOUS EQUATIONS AND DIFFERENTIABILITY OF FLOWS		
	 Existence, Uniqueness, and Continuity for Nonautonomous Differential Equations Differentiability of the Flow of Autonomous Equations 	296 298	
CHAPTER 16	PERTURBATION THEORY AND STRUCTURAL STABILITY		
	 Persistence of Equilibria Persistence of Closed Orbits Structural Stability 	304 309 312	
AFTERWORD		319	
APPENDIX I	ELEMENTARY FACTS		
	 Set Theoretic Conventions Complex Numbers Determinants Two Propositions on Linear Algebra 	322 323 324 325	
APPENDIX II	POLYNOMIALS		
	1. The Fundamental Theorem of Algebra	328	
APPENDIX III	ON CANONICAL FORMS		
	 A Decomposition Theorem Uniqueness of S and N Canonical Forms for Nilpotent Operators 	331 333 334	

viii		CONTENTS
APPENDIX IV	THE INVERSE FUNCTION THEOREM	337
	REFERENCES	340
	ANSWERS TO SELECTED PROBLEMS	343
	Subject Index	355

17

•