

Contents

I.	Introduction					
	1.1	The V	an der Pol oscillator	2		
	1.2	Mechanical prototypes of relaxation oscillators				
		Discontinuous approximations				
			ned asymptotic expansions	12		
			d oscillations	15		
			al entrainment	18		
2.	Free oscillation					
	2.1	Auton	nomous relaxation oscillation: definition and existence	25		
		2.1.1	A mathematical characterization of relaxation oscillations	26		
		2.1.2	Application of the Poincaré-Bendixson theorem	28		
			Application of the extension theorem	34		
			Application of Tikhonov's theorem	42		
			The analytical method of Cartwright	52		
	2.2		ptotic solution of the Van der Pol equation	55		
			The physical plane	56		
			The phase plane	59		
			The Lienard plane	67		
			Approximations of amplitude and period	70		
	2.3		olterra-Lotka equations	72		
			Modeling prey-predator systems	72		
			Oscillations with both state variables having a large amplitude	74		
		2.3.3	Oscillations with one state variable having a large amplitude	76		
		2.3.4	The period for large amplitude oscillations by inverse Laplace asymptotics	83		
	2.4					
		2.4.1	The Brusselator	87		
		2.4.2	The Belousov-Zhabotinskii reaction and the Oregonator	89		
	2.5	Bifuro	cation of the Van der Pol equation with a constant forcing			
	-	term		91		
		2.5.1	Modeling nerve excitation; the Bonhoeffer-Van der Polequation	92		
		2.5.2	Canards	94		
	2.6	27-05-05-05-14-09	astic and chaotic oscillations	99		
			Chaotic relaxation oscillations	101		
			Randomly perturbed oscillations	105		
			The Van der Pol oscillator with a random forcing term	107		
			Distinction between chaos and noise	112		
		ALL THAT PRODUCT CHILD				

3.	For	ced osc	illation and mutual entrainment	115
	3.1	Mode	eling coupled oscillations	117
		3.1.1	Oscillations in the applied sciences	117
		3.1.2	The system of differential equations and the method of analysis	118
	3.2	A rigo	orous theory for weakly coupled oscillators	123
		3.2.1	Validity of the discontinuous approximation	123
		3.2.2	Construction of the asymptotic solution	125
		3.2.3	Existence of a periodic solution	128
		3.2.4	Formal extension to oscillators coupled with delay	130
	3.3	Coup	ling of two oscillators	131
		3.3.1	Piece-wise linear oscillators	132
		3.3.2	Van der Pol oscillators	134
		3.3.3	Entrainment with frequency ratio 1:3	136
		3.3.4	Oscillators with different limit cycles	138
	3.4		eling biological oscillations	139
		3.4.1	Entrainment with frequency ratio n:m	140
		3.4.2	A chain of oscillators with decreasing autonomous fre-	
		3	quency	141
		3.4.3	A large population of coupled oscillators with widely different frequencies	143
		3.4.4	A large population of coupled oscillators with frequen-	
			cies having a Gaussian distribution	144
		3.4.5	Periodic structures of coupled oscillators	144
		3.4.6	Nonlinear phase diffusion equations	148
4	The	Mon de	on Dal agaillatan with a simusaidal faraina tarm	151
₩.	1 ne	van u	er Pol oscillator with a sinusoidal forcing term	151
	4.1	Qualit	tative methods of analysis	153
		4.1.1	Global behavior and the Poincaré mapping	154
		4.1.2	The use of symbolic dynamics	157
		4.1.3	Some remarks on the annulus mapping	158
	4.2	Asym	ptotic solution of the Van der Pol equation with a	
			rate forcing term	159
		4.2.1	Subharmonic solutions	160
		4.2.2	Dips slices and chaotic solutions	167
	4.3	Asym	ptotic solution of the Van der Pol equation with a	
			forcing term	169
		4.3.1	Subharmonic solutions	170
			Dips and slices	179
		4.3.3	Irregular solutions	182

Appendices

A :	Asymptotics of some special functions	187	
B :	Asymptotic ordering and expansions	189	
C:	Concepts of the theory of dynamical systems	190	
D:	Stochastic differential equations and diffusion approximations	196	
Literature			
Author Index			
Subject Index			