		Page
	CONTENTS	
Prefato Prefac	ory Note e	xv xvii
	PARTI	
	REPRESENTATIONS OF THE GROUP OF ROTATIONS OF THREE-DIMENSIONAL SPACE	
CHAP'	TER I	
	THE ROTATION GROUP AND ITS REPRESENTATIONS	
	Section 1	
The G	roup of Rotations in Three-dimensional Space	3
§ 1.	Definition of the group of rotations	3
§ 2.	Parametrization of the rotation group	4
§ 3.	Invariant integration	6
§ 4.	The connexion between the rotation group and the group of 2 by 2 unitary matrices	8
§ 5.	The notion of a representation of the group of rotations	14
5 <u>2</u>		
	Section 2	
	esimal Rotations and the Determination of the Irreducible entations of the Group of Rotations	16
§ 1.	Definition of the matrices A_k corresponding to infinitesimal rotations	16
§ 2.	Relations between the matrices A_k	19
§ 3.	The form of an irreducible representation	22
§ 4.	The resolution of a representation into	27

			Page
§	5.	Examples of representations	30
		Appendix to Section 2	
		Proof that the Matrix T_y is Differentiable	34
		Section 3	
SĮ	heric	al Functions and Representations of the Group of Rotations	36
§	1.	Definition of spherical functions	36
8	2.	The differential operators corresponding to infinitesimal rotations	38
8	3.	The differential equations of spherical functions	40
§	4.	An explicit expression for spherical functions	42
8	5.	The expression of functions defined on the sphere in terms of the spherical functions	46
		Section 4	**
		Multiplication of Representations	47
§	1.	Definition of the product of representations	47
§	2.	The transformations which correspond to infinitesimal rotations in the product representation	50 °
8	3.	The product of two irreducible representations	51
8	4.	The resolution of the product of irreducible representations one of which has the weight 1 or $\frac{1}{2}$	54
		Section 5	*
		Tensors and Tensor Representations	58
§	1.	The fundamental algebraic operations on tensors and invariant subspaces	58
8	2.	The determination of the weights of the irreducible representations into which the tensor representation may be resolved	64
§	3.	The resolution of a tensor representation into isotypic representations. Tensors of the third rank	65

		age
## At	Section 6	5+
3X	Spinors and Spinor Representations	71
§ 1.	Definition of spinors and spinor representations	71
§ 2.	Symmetric spinors. The existence of irreducible representations for any (integral or half an odd integer) weight <i>l</i>	72
§ 3.	Fundamental operations on spinors	74
§ 4.	The irreducible constituents of a spinor representation	76
CHA	PTER II	
	FURTHER ANALYSIS OF THE REPRESENTATIONS OF THE ROTATION GROUP	
	Section 7	
	The Matrix Elements of an Irreducible Representation (The Generalized Spherical Functions)	78
§ 1.	The operator U_g	78
§ 2.	The differential operators corresponding to infinitesimal rotations	79
§ 3.	The dependence of the matrix elements on the Euler Angles φ_1 , φ_2	82
§ 4.	The generalized spherical functions	83
§ 5.	The additional formula in the matrix elements	89
§ 6.	The expansion of functions defined on the rotation group in series of generalized spherical functions	92
	Appendix to Section 7	
	Recurrence Relations between the Generalized Spherical Functions Section 8	94
	Expansion of Vector and Tensor Fields	99
§ 1.	Expansion of vector functions	99
§ 2.	Expansion of arbitrary quantities	106
§ 3.	Example. A field of tensors of the second rank	108
§ 4.	Solution of Maxwell's equations	110

		Page
	Section 9	552 5 5
	Equations Invariant with respect to Rotation	115
§ 1.	Definition of invariant equations	116
§ 2.	Reformulation of the conditions of invariance	118
§ 3.	Determination of the matrices L_1 , L_2 , L_3	119
§ 4.	Solution of invariant equations	125
§ 5.	Solution of Dirac equations	131
§ 6.	The matrices L_1 , L_2 , L_3 for the case $x \neq 0$ (further conclusions)	133
§ 7.	Invariant equation with $x=0$	139
	Section 10	
	Analysis of the Product of Two Representations	
	Clebsch-Gordan Coefficients	142
§ 1.	Evaluation of the Clebsch-Gordan coefficients	142
§ 2.	The Clebsch-Gordan coefficients for the case when one of the representations has weight 1 or $\frac{1}{2}$	150
§ 3.	The symmetry of the Clebsch-Gordan coefficients	151
§ 4.	The transformation from a canonical basis in $R_1 \times R_2$ to the basis $\{e_i f_k\}$	152
§ 5.	Racah coefficients	153
	PART II	
	REPRESENTATIONS OF THE LORENTZ GROUP	
CHAPT	CER I	
	THE LORENTZ GROUP AND ITS REPRESENTATIONS	
	Section 1	
<i>38</i>	The Lorentz Group	158
§ 1.	Definition of the Lorentz group	158
§ 2.	Orthogonal coordinate systems	161

8		Page	
§ 3.	Surfaces in four-dimensional space which are transi- tive with respect to Lorentz groups. The components of compendency of a Lorentz group	162	
§ 4.	The relation of the Lorentz group to the group of complex matrices of the second order with determinant equal to unity	166	
§ 5.	The relation between the proper Lorentz group and the group of complex matrices of the second order with unit determinant (other considerations)		
§ 6.	The Lorentz group as the group of motions in Lobachevskian space	174	
§ 7.	Definition of the representation of the Lorentz group and fundamental concepts of the theory of representations	176	
§ 8.	The relation between representations of the proper Lorentz group and representations of the group of complex second-order matrices (two-valued representations of the proper Lorentz group)	178	
§ 9.	Two-valued representations of the general Lorentz group	180	
§ 10.	The basic differences between the representations of the group of rotations of three-dimensional space and the Lorentz group	182	
	Section 2		
	Infinitesimal Operators and Representations of the Proper Lorentz Group	184	
§ 1.	The basic one-parameter subgroups of the Lorentz group	184	
§ 2.	The representation of the elements of the proper Lorentz group in the form of products of elements from the basic one-parameter subgroups	185	
§ 3.	Definition of the infinitesimal operators	186	
§ 4.	The form of the infinitesimal operators for irreducible representations of the proper Lorentz group	188	
§ 5.	The unique and two-valued representations of the proper Lorentz group	195	
§ 6.	Conjugate representations	195	
§ 7.	Finite representations of the proper Lorentz group	197	

		Page
§ 8.	Unitary irreducible representations of the proper Lorentz group	199
§ 9.	The invariant Hermitian bilinear form	201
	Section 3	Sir.
	Representation of the Complete and General Lorentz Group	207
§ 1.	Preliminary remarks	207
§ 2.	The irreducible components of a representation of the proper Lorentz group generated by an irreducible representation of the complete group	209
§ 3.	The operator of spatial reflection	212
§ 4.	Irreducible, unique representations of the general Lorentz group	216
§ 5.	Two-valued representations of the general Lorentz group	217
§ 6.	The non-degenerate Hermitian bilinear form, in- variant under a representation of the complete Lorentz group	
	Section 4	
	Spinors and Spinor Representations of the Proper Lorentz Group	224
§ 1.	Spinors of rank 1	224
§ 2.	Lowering of the indices of spinors of the first rank	232
§ 3.	Spinors of higher ranks	233
§ 4.	Symmetrical spinors. The realization of all the finite irreducible representations of the proper group.	23 5
§ 5.	Lowering the index of spinors of higher rank	241
§ 6.	Another description of spinor representation	244
§ 7.	Unitary representations of the proper Lorentz group	246
§ 8.	An observation on tensors	248
§ 9.	The difference between spinor and tensor representations of the Lorentz group	252

		Page
	Section 5	
	Finite Representations of the Complete and General Lorentz Groups. Bispinors	252
§ 1.	A bispinor of the first rank	253
§ 2.	The general case. Bispinors of rank (k, n)	256
§ 3.	Irreducible representations of the general group	259
§ 4.	Tensor representations of the complete and general Lorentz groups	260
	Section 6	
	The Product of Two Irreducible Finite Representations of the Proper Lorentz Group	262
§ 1.	The decomposition of the Kronecker product of two irreducible representations of the proper Lorentz group into irreducible constituents	262
§ 2.	The Clebsch-Gordan coefficients	266
CHAP	TER II	
	RELATIVISTIC-INVARIANT EQUATIONS	
	Section 7	
	General Relativistic-Invariant Equations	269
§ 1.	Definition of relativistic-invariant equations	269
§ 2.	The conditions for relativistic invariance of an equation for the case when $x \neq 0$	271
§ 3.	The determination of the matrices L_0 , L_1 , L_2 , L_3	274
§ 4.	Relativistic-invariant & uations with × ()	277
§ 5.	Equations invariant with respect to the complete Lorentz group	280
§ 6.	An observation concerning the operators T_g The case of the general Lorentz group	282

		Page		
	Section 8			
	Equations arising from Invariant Lagrangian Functions	283		
§ 1.	The invariant Lagrangian function	284		
§ 2.	Equations arising from invariant Lagrangian functions	287		
§ 3.	Equations arising from invariant Lagrangian functions (conclusion)	291		
₿ 4.	Quantities formed from the wave function and the invariant form			
§ 5.	§ 5. An observation concerning quantities of second degree in the wave function ψ			
	Section 9			
	Examples of Relativistic-Invariant Equations	300		
§ 1.	The Dirac equation	300		
§ 2.	The Daffine equation for scalar particles	305		
§ 3.	The Daffine equation for vector particles	307		
§ 4.	The equation for a two-component neutrino	309		
§ 5.	Maxwell's equations for an electromagnetic field in space	312		
§ 6.	The Pauli-Fierz equation	315		
§ 7.	Examples of infinite invariant equations	319		
	Section 10			
	The Determination of the Rest Mass and Spin of a Particle	321		
§ 1.	Plane waves. The energy-momentum vector	321		
§ 2.	The rest system. The rest mass	327		
§ 3.	The spin of a stationary particle	328		
§ 4.	The spin of a particle in an arbitary coordinate system	329		
§ 5.	Particles with zero rest mass	332		
§ 6.	The polarization of particles with zero rest mass	333		

				Page
8	7.	The rest mass and the spin of particles described by the equations of the previous section		
§	8.	Infinite	e equations	339
			Section 11	
			The Charge and Energy of Relativistic Particles	340
§	1.	The de	finition of charge and energy	341
§	2.	Finite equations, with positive charges and diagonable matrix L_0		343
8	3.	Finite equations with positive energy and a diagonable matrix $\boldsymbol{L_0}$		345
§	4.	Equations with positive charge and a matrix L_0 not reducing to diagonal form		347
§	5.	Pauli's	theorem	349
§	6.	Infinite equations with positive charge or energy		351
			SUPPLEMENTS	353
		I.	Irreducible Representations of the Group of Orthogonal Matrices	353
		II.	Finite Representations of the Group of Non- singular n-th order Matrices	358
		III.	An Observation on the Duality between Clebsch-Gordan Coefficients and Jacobi Polynomials	362
			BIBLIOGRAPHY	366