CONTENTS

MOTIVATION		vii
CHAPTER 1:	NONLINEAR PROBLEMS IN 1+1 AND THEIR LINEARIZATION	1
CHAPTER 2:	CLASSICAL FIELD THEORY MODELS: HAMILTONIAN FORMULATION, ACTION-ANGLE VARIABLES, SOLITONS	
2.2 2.3 2.4	Korteweg-de Vries (KdV) Field Nonlinear Schrödinger Field Sine-Gordon Field Massive Thirring Field Gross-Neveu Family	16 20 26 31 34
CHAPTER 3:	CLASSICAL LATTICE MODELS AND LATTICE APPROXIMANTS OF CLASSICAL FIELDS	
3.2	Toda Chain Completely Integrable Lattice Models: An Overview (Non-integrable) Lattice Approximants of Classical Fields	41 45 48
CHAPTER 4:	QUANTIZATION ON A LATTICE: RELATIONSHIP CLASSICAL-QUANTUM	S
	Coherent States and the Tree Approximation Concept for Bose Systems	54
	Quantized Spin Lattice Systems on Coherent (Bose) Domains	59
4.3	Lattice Fermions on Coherent (Bose) Domains	68

CHAPTER 5: QUANTIZATION ON A	LATTICE: SIMPLE BOSE MODELS
5.2.1 General st 5.2.2 Lattice no 5.2.3 Lattice si	able Lattice Models: An Overview ructure of the method 84 nlinear Schrödinger model 87
CHAPTER 6: SPIN 1/2 LATTICE PROBLEMS: LATTI	SYSTEMS RELATED TO NONLINEAR BOSE CE FERMIONS
Two-level (Spin 6.2 The Ice (Six-Vert Solution 6.3 Spin 1/2 Lattice Equivalences 6.3.1 Isotropic	se Systems on a Lattice: 1/2) Approximation Concept ex) Model and its Bethe Ansatz 108 versus Bose Lattice: Study of spin 1/2 Heisenberg model vs nonlinear Schrödinger model 112
6.3.2 Ice model 6.3.3 Spin 1/2 x Gordon m	vs lattice sine-Gordon model 115 yz Heisenberg model vs sine-
CHAPTER 7: QUANTIZATION IN C PROBLEMS IN 1+1	ONTINUUM: JOINT BOSE-FERMI SPECTRAL
Harmonic Coupli	nger Type Field with Non-local ng nger Field: Repulsive Case 142 Field 146
CHAPTER 8: QUANTUM MEANING OF FERMI SYSTEMS	F CLASSICAL FIELD THEORY FOR
Nonlinear Wave Fermions in Qua 8.2 The Fermi Oscilla 8.3 Commuting c-numbe	r Path Integral Formulation for elds: Classical vs Fermi 173

CHAPTER 9:	ON INFINITE CONSTITUENT "ELEMENTARY" SYSTEMS: CANONICAL (CONSTITUENT) QUANTIZATION OF SOLITON FIELDS	
9.1	Free Field Reconstruction of Interacting Fields and the Problem of the Classical-Quantum Relationship	
	9.1.1 Solitons as classical images of quantum "condensates"	183
	9.1.2 ϕ_2^4 model	185
	9.1.3 Sine-Gordon model	189
	9.1.4 Remarks on the massive Thirring model and its free field reconstruction	192
9.2	Free Field Constituents of the Sine-Gordon Solitons: Quantization, "Confinement" and all that	195
9.3	"Elementary" Two-level Systems and their Interaction in 1+1 Dimensions	204
CHAPTER 10:	TOWARDS 1+3: PROBLEMS AND PROSPECTS	
10.1	Classical Nonlinear Fields in 1+3: An Account of Non-spinor Models	214
10.2	Classical Nonlinear Fields in 1+3: Spinor Models Bose Transcription of Fermi Fields as the Link between Classical and Quantum Realities: "Bosonization" in 1+3	218
	10.3.1 "Bosonization" in the perturbative framework	222
	10.3.2 Fermions vs bosons, bosons vs fermions: Is there a fundamentality problem?	228
SUBJECT INDI	EX	243