CONTENTS | MOTIVATION | | vii | |-------------------|---|----------------------------| | CHAPTER 1: | NONLINEAR PROBLEMS IN 1+1 AND THEIR LINEARIZATION | 1 | | CHAPTER 2: | CLASSICAL FIELD THEORY MODELS: HAMILTONIAN FORMULATION, ACTION-ANGLE VARIABLES, SOLITONS | | | 2.2
2.3
2.4 | Korteweg-de Vries (KdV) Field
Nonlinear Schrödinger Field
Sine-Gordon Field
Massive Thirring Field
Gross-Neveu Family | 16
20
26
31
34 | | CHAPTER 3: | CLASSICAL LATTICE MODELS AND LATTICE APPROXIMANTS OF CLASSICAL FIELDS | | | 3.2 | Toda Chain
Completely Integrable Lattice Models: An Overview
(Non-integrable) Lattice Approximants of
Classical Fields | 41
45
48 | | CHAPTER 4: | QUANTIZATION ON A LATTICE: RELATIONSHIP CLASSICAL-QUANTUM | S | | | Coherent States and the Tree Approximation Concept for Bose Systems | 54 | | | Quantized Spin Lattice Systems on Coherent (Bose) Domains | 59 | | 4.3 | Lattice Fermions on Coherent (Bose) Domains | 68 | | CHAPTER 5: QUANTIZATION ON A | LATTICE: SIMPLE BOSE MODELS | |--|---| | 5.2.1 General st
5.2.2 Lattice no
5.2.3 Lattice si | able Lattice Models: An Overview ructure of the method 84 nlinear Schrödinger model 87 | | CHAPTER 6: SPIN 1/2 LATTICE
PROBLEMS: LATTI | SYSTEMS RELATED TO NONLINEAR BOSE
CE FERMIONS | | Two-level (Spin 6.2 The Ice (Six-Vert Solution 6.3 Spin 1/2 Lattice Equivalences 6.3.1 Isotropic | se Systems on a Lattice: 1/2) Approximation Concept ex) Model and its Bethe Ansatz 108 versus Bose Lattice: Study of spin 1/2 Heisenberg model vs nonlinear Schrödinger model 112 | | 6.3.2 Ice model
6.3.3 Spin 1/2 x
Gordon m | vs lattice sine-Gordon model 115
yz Heisenberg model vs sine- | | CHAPTER 7: QUANTIZATION IN C
PROBLEMS IN 1+1 | ONTINUUM: JOINT BOSE-FERMI SPECTRAL | | Harmonic Coupli | nger Type Field with Non-local
ng
nger Field: Repulsive Case 142
Field 146 | | CHAPTER 8: QUANTUM MEANING OF FERMI SYSTEMS | F CLASSICAL FIELD THEORY FOR | | Nonlinear Wave
Fermions in Qua
8.2 The Fermi Oscilla
8.3 Commuting c-numbe | r Path Integral Formulation for elds: Classical vs Fermi 173 | | CHAPTER 9: | ON INFINITE CONSTITUENT "ELEMENTARY" SYSTEMS: CANONICAL (CONSTITUENT) QUANTIZATION OF SOLITON FIELDS | | |--------------|--|-----| | 9.1 | Free Field Reconstruction of Interacting Fields and the Problem of the Classical-Quantum Relationship | | | | 9.1.1 Solitons as classical images of quantum "condensates" | 183 | | | 9.1.2 ϕ_2^4 model | 185 | | | 9.1.3 Sine-Gordon model | 189 | | | 9.1.4 Remarks on the massive Thirring model and its free field reconstruction | 192 | | 9.2 | Free Field Constituents of the Sine-Gordon Solitons: Quantization, "Confinement" and all that | 195 | | 9.3 | "Elementary" Two-level Systems and their Interaction in 1+1 Dimensions | 204 | | CHAPTER 10: | TOWARDS 1+3: PROBLEMS AND PROSPECTS | | | 10.1 | Classical Nonlinear Fields in 1+3: An Account of Non-spinor Models | 214 | | 10.2 | Classical Nonlinear Fields in 1+3: Spinor Models Bose Transcription of Fermi Fields as the Link between Classical and Quantum Realities: "Bosonization" in 1+3 | 218 | | | 10.3.1 "Bosonization" in the perturbative framework | 222 | | | 10.3.2 Fermions vs bosons, bosons vs fermions: Is there a fundamentality problem? | 228 | | SUBJECT INDI | EX | 243 |