

Contents (Volume I)

Introduction

§ 1.	Basic Concepts and Equations of Theory	2
§ 2.	Equilibrium States of Collisionless Gravitating Systems	6
•	Small Oscillations and Stability	9
	Jeans Instability of a One-Component Uniform Medium	10
	Jeans Instability of a Multicomponent Uniform Medium	14
	5.1. Basic Theorem (on the Stability of a Multicomponent System with	
	Components at Rest)	16
	5.2. Four Limiting Cases for a Two-Component Medium	17
	5.3. Table of Jeans Instabilities of a Uniform Two-Component Medium	18
	5.4. General Case of n Components	19
	Non-Jeans Instabilities	19
	Qualitative Discussion of the Stability of Spherical, Cylindrical (and	
O	Disk-Shaped) Systems with Respect to Radial Perturbations	21
ΡΔ 1	RT I	
1 73		
The	eory	
CHA	APTER I	
	ilibrium and Stability of a Nonrotating Flat Gravitating Layer	27
•	Equilibrium States of a Collisionless Flat Layer	28
•	Gravitational (Jeans) Instability of the Layer	31
y 2.	Oluvitational (Journey Lineautric) of the Layer	
		xiii

§ 3. Anisotropic (Fire-Hose) Instability of a Collisionless Flat Layer	37
3.1. Qualitative Considerations	37
3.2. Derivation of the Dispersion Equation for Bending Perturbations	20
of a Thin Layer	38
3.3. Fire-Hose Instability of a Highly Anisotropic Flat Layer	40
3.4. Analysis of the Dispersion Equation	41 42
3.5. Additional Remarks 8.4. Desire tion of Integral Differential Faustions for Normal Modes of a	42
§ 4. Derivation of Integro-Differential Equations for Normal Modes of a	43
Flat Gravitating Layer § 5. Symmetrical Perturbations of a Flat Layer with an Isotropic	73
Distribution Function Near the Stability Boundary	50
§ 6. Perpendicular Oscillations of a Homogeneous Collisionless Layer	53
6.1. Derivation of the Characteristic Equation for Eigenfrequencies	53
6.2. Stability of the Model	63
6.3. Permutational Modes	68
6.4. Time-Independent Perturbations ($\omega = 0$)	69
Problems	69
CHAPTER II	
Equilibrium and Stability of a Collisionless Cylinder	78
§ 1. Equilibrium Cylindrical Configurations	79
§ 2. Jeans Instability of a Cylinder with Finite Radius	83
2.1. Dispersion Equation for Eigenfrequencies of Axial-Symmetrical	
Perturbations of a Cylinder with Circular Orbits of Particles	84
2.2. Branches of Axial-Symmetrical Oscillations of a Rotating Cylinder	
with Maxwellian Distribution of Particles in Longitudinal Velocities	85
2.3. Oscillative Branches of the Rotating Cylinder with a Jackson	D 125
Distribution Function (in Longitudinal Velocities)	92
2.4. Axial-Symmetrical Perturbations of Cylindrical Models of a More	
General Type	95
§ 3. Nonaxial Perturbations of a Collisionless Cylinder	97
3.1. The Long-Wave Fire-Hose Instability	97 100
3.2. Nonaxial Perturbations of a Cylinder with Circular Particle Orbits	100
§ 4. Stability of a Cylinder with Respect to Flute-like Perturbations	109
§ 5. Local Analysis of the Stability of Cylinders (Flute-like Perturbations)	110
5.1. Dispersion Equation for Model (2), § 1	115
5.2. Maxwellian Distribution Function	117
§ 6. Comparison with Oscillations of an Incompressible Cylinder 6.1. Flute-like Perturbations ($k_z = 0$)	118
§ 7. Flute-like Oscillations of a Nonuniform Cylinder with Circular Orbits	
of Particles	119
Problems	125
1 100iciiis	
CHAPTER III	
Equilibrium and Stability of Collisionless Spherically Symmetrical	
Systems	136
§ 1. Equilibrium Distribution Functions	138
§ 2. Stability of Systems with an Isotropic Particle Velocity Distribution	152
2.1. The General Variational Principle for Gravitating Systems with the	
Isotropic Distribution of Particles in Velocities	
$(f_0 = f_0(E), f'_0 = df_0/dE \le 0)$	152

	Contents (Volume I)	xv
	2.2. Sufficient Condition of Stability	155
	2.3. Other Theorems about Stability. Stability with Respect to Nonradial	
	Perturbations 2.4 Washington at Daimainte for Darkin Dominations	158
	2.4. Variational Principle for Radial Perturbations	160
	2.5. Hydrodynamical Analogy	161
	2.6. On the Stability of Systems with Distribution Functions That Do	1/2
\$ 2	Not Satisfy the Condition $f_0'(E) \le 0$ Stability of Systems of Gravitating Partials: Maying On Ginavler	163
g 3.	Stability of Systems of Gravitating Particles Moving On Circular	161
	Trajectories 3.1. Stability of a Uniform Sphere	164
	3.2. Stability of a Homogeneous System of Particles with Nearly Circular	164
	Orbits	173
	3.3. Stability of a Homogeneous Sphere with Finite Angular Momentum	174
	3.4. Stability of Inhomogeneous Systems	179
84	Stability of Systems of Gravitating Particles Moving in Elliptical Orbits	186
γ ¬.	4.1. Stability of a Sphere with Arbitrary Elliptical Particle Orbits	186
	4.2. Instability of a Rotating Freeman Sphere	190
8.5	Stability of Systems with Radial Trajectories of Particles	193
<i>γ J</i> .	5.1. Linear Stability Theory	193
	5.1. Efficial Stability Theory 5.2. Simulation of a Nonlinear Stage of Evolution	199
86	Stability of Spherically Symmetrical Systems of General Form	207
у o.	6.1. Series of the Idlis Distribution Functions	209
	6.2. First Series of Camm Distribution Functions (Generalized	200
	Polytropes)	219
	6.3. Shuster's Model in the Phase Description	231
87.	Discussion of the Results	235
•	blems	238
CH	APTER IV	
		246
1.00	uilibrium and Stability of Collisionless Ellipsoidal Systems	
91.	Equilibrium Distribution Functions	248
	1.1. Freeman's Ellipsoidal Models 1.2. "Het" Models of Collisionless Ellipsoids of Payolution	248256
8.2	1.2. "Hot" Models of Collisionless Ellipsoids of Revolution	265
g 2.	Stability of a Three-Axial Ellipsoid and an Elliptical Disk 2.1. Stability of a Three-Axial Ellipsoid	265
	2.1. Stability of a Three-Axial Empsoid 2.2. Stability of Freeman Elliptical Disks	272
8.2	Stability of Two-Axial Collisionless Ellipsoidal Systems	276
g <i>3</i> .	3.1. Stability of Freeman's Spheroids	276
	3.2. Peebles-Ostriker Stability Criterion. Stability of Uniform	270
	Ellipsoids, "Hot" in the Plane of Rotation	284
	3.3. The Fire-Hose Instability of Ellipsoidal Stellar Systems	290
	3.4. Secular and Dynamical Instability. Characteristic Equation for	270
	Eigenfrequencies of Oscillations of Maclaurin Ellipsoids	294
Pro	blems	296
110		270
CH	ADTED V	
	APTER V uilibrium and Stability of Flat Gravitating Systems	323
11/10/2		323
91.	Equilibrium States of Flat Gaseous and Collisionless Systems	327
	1.1. Systems with Circular Particle Orbits 1.2. Placena Systems with a Magnetic Field	334
	1.2. Plasma Systems with a Magnetic Field	

xvi Contents (Volume I)

	1.3. Gaseous Systems	337
	1.4. "Hot" Collisionless Systems	338
§ 2.	Stability of a "Cold" Rotating Disk	343
	2.1. Membrane Oscillations of the Disk	343
	2.2. Oscillations in the Plane of the Disk	362
§ 3.	Stability of a Plasma Disk with a Magnetic Field	380
	3.1. Qualitative Derivation of the Stability Condition	380
	3.2. Variational Principle	381
	3.3. Short-Wave Approximation	385
	3.4. Numerical Analysis of a Specific Model	387
§ 4.	Stability of a "Hot" Rotating Disk	389
	4.1. Oscillations in the Plane of the Disk	389
	4.2. Bending Perturbations	401
	4.3. Methods of the Stability Investigation of General Collisionless	
	Disk Systems	404
	4.4. Exact Spectra of Small Perturbations	412
	4.5. Global Instabilities of Gaseous Disks. Comparison of Stability	
	Properties of Gaseous and Stellar Disks	428
Pro	blems	434
References		445
Additional References		459
Ind	łex	465

\$1